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Abstract: In spite of India's phenomenal rice production of 118.43 million tonnes in 2019-20, the potential yield and the yield realised at the 
farmers' fields are vastly different. Among the factors contributing towards this yield gap, the infestation of insect pests causes significant 
economic damage. Since these biotic menaces are largely weather-dependent, weather-based predictions of insect pests are often utilised to 
make economic decisions about insect pest management. Hence, an effort has been made in this study to comparatively assess the suitability 
of different count data regression models for weather-based prediction of three major rice insect pests (viz., gundhi bug, brown planthopper 
and green leafhopper) in the Terai region of West Bengal. As the input weather variables are related in a linear fashion, principal components 
have been obtained to be utilised subsequently in the regression analysis. Among the regression models considered, the recently developed 

modified Poisson quasi Lindley regression model has empirically outperformed all of its counterparts in handling over-dispersion.  However, -
the Poisson regression model has provided better result when no over-dispersion is evident. Outcomes emanated from the investigation have 
also revealed that the over-dispersion test plays a fairly good role in providing reliable guidance on the presence of over-dispersion. Hence, it is 
suggested that before adopting any weather-based count data regression model for predicting insect pest counts, one needs to check whether 
the count response variable is indeed over-dispersed.
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Rice (  L.) feeds more than half of the global Oryza sativa

population (Doliente and Samsatli 2021) and is the sole 

cereal crop grown under waterlogged conditions in irrigated 

as well as in rain-fed fields in India (Mishra et al 2007). In spite 

of India's phenomenal rice production of 118.43 million 

tonnes in 2019-20 (Directorate of Economics and Statistics 

2021), the potential yield and the yield realised at the farmers' 

fields are vastly different. Among the factors contributing 

towards this yield gap, the infestation of insect pests causes 

significant economic damage. In the absence of stable, 

desirable and diversified sources of resistance to the biotic 

menaces, pesticides remain the only effective means to 

manage them (Kumar et al 2016, Sindhu et al 2016). Precise 

knowledge about the insect pest population dynamics can 

substantially help to formulate the necessary pesticide 

schedule for the region against the specific menace 

anticipated. Since these biotic menaces are largely weather-

dependent (Kumar 2016), weather-based predictions of 

insect pests are often utilised to make economic decisions 

about insect pest management. Singh et al (2012) have 

investigated the incidence of insect pest damage in rice crop 

in Punjab in connection to meteorological parameters and 

also suggested that these can be used as a tool for the 

preparation of weather-based agro-advisory. Kaur and Bala 

(2014) have developed crop-weather-pest calendars for 

need-based spraying of the pesticides to manage the rice 

insect pests in Punjab. Yadav et al (2010) have employed 

weather-based log-linear models for agro-ecological zoning 

of brown planthopper incidence on rice. However, if the 

response variable of interest is a count (i.e., non-negative 

integer values), as in this case insect  count, the  pest

applications of count data regression models are now well-

recognised. Due to its increasing application in divergent 

disciplines such as actuarial science, biostatistics, 

demography, economics and so on, upsurging research 

interest in count data modelling has been evident in the last 

decade. The Poisson regression model has served well as a 

starting point for count data modelling. Tobías et al (2001) 

have employed the Poisson regression model to assess the 

short-term impact of environmental noise on daily emergency 

admissions in Madrid. Crowther et al (2012) have carried out 

a meta-analysis of survival data using the Poisson regression 

model. Li et al (2013) have achieved remarkable success in 

modelling county-level crashes by using the geographically 

weighted Poisson regression model. Despite the immense 

popularity and sheer power of the Poisson regression model, 

it suffers from the limitation of equi-dispersion (Osgood 

2000). That is, the mean and variance of the count response 



variable are assumed to be equal in this model. In reality, 

many count data sets often violate this assumption because 

of their over-dispersed (variance>mean) or under-dispersed 

(variance<mean) nature (Lee et al 2021). To overcome this 

lacuna, several researchers have put great efforts to 

introduce and improve different regression models for the 

over-dispersed or under-dispersed count data (Cameron and 

Trivedi 2013, Wongrin and Bodhisuwan 2017). Among the 

alternatives available for accommodating over-dispersion, 

negative binomial regression is the most popular choice 

( ). It includes a parameter to inflate the Poisson Osgood 2000

dispersion as needed ( ). Another Berk and MacDonald 2008

alternative model, which can capture over-dispersion or 

under-dispersion or no dispersion at all, is the generalised 

Poisson regression model given by Consul and Famoye 

(1992). Recently, Altun (2019) has also proposed a new 

regression model for over-dispersed count data via re-

parametrisation of Poisson quasi-Lindley distribution. 

Count data regression models have been compared in 

several studies, especially in presence of over-dispersion. 

Ismail and Jemain (2007) have compared the ability of 

negative binomial and generalised Poisson regression 

models in handling over-dispersion on three different sets of 

claim frequency data and obtained comparable 

performance. Gent et al (2012) have carried out a spatial 

analysis to derive an appropriate incidence-density 

relationship for downy mildew. Outcomes emanated from 

their study have revealed the advantages of employing a 

negative binomial regression model over a Poisson 

regression model. 2013) have compared Melliana et al (

negative binomial and generalised Poisson regression 

models in determining the factors responsible for cervical 

cancer cases in East Java and found that the former one has 

handled over-dispersion in a much better way. Yusuf and 

Ugalahi (2015) have observed the superiority generalised 

Poisson regression model in identifying the factors 

associated with the number of antenatal care visits in Nigeria. 

However, most of these studies are devoid of any pretesting 

of over-dispersion. This will enable us to assess whether the 

over-dispersion test (Cameron and Trivedi 1990) provides 

any indication to the of count data regression suitability 

models. Besides, the literature also suggests to consider 

various information criteria along with the significance of 

regression coefficients while evaluating the model 

performance. This is due to the fact that Poisson regression 

has the property to underestimate the standard error and 

consequently, to exaggerate the significance of the model 

coefficients in presence of over-dispersion (Sileshi 2006, 

Ismail and Jemain 2007). The above facts explicitly indicate 

that there is a lack of systematic investigation on count data 

regression modelling, especially in the field of weather-based 

prediction of insect pest counts. Since improved models have 

continuously been added to the model builders' arsenal, 

there is a necessity to investigate afresh the insect pest 

population dynamics concerning the weather parameters. 

With this backdrop, an effort has been made in this paper to 

comparatively assess the suitability of different count data 

regression models for weather-based prediction of three 

major rice insect pests (viz., gundhi bug, brown planthopper 

and green leafhopper) in the Terai region of West Bengal.

MATERIAL AND METHODS

Collection of data: For the present investigation on count 

data regression modelling, count data of three major rice 

insect pests, viz. gundhi bug (GB), brown planthopper (BPH) 

and green leafhopper (GLH) have been obtained from the 

Department of Agricultural Entomology, Uttar Banga Krishi 

Viswavidyalaya, Pundibari. The collected data consists of 

insect pests counts of the seven consecutive boro seasons 

(from 2011 to 2017). It is noteworthy to mention that the data of 

a particular field, which was devoid of any insecticide 

application, have been considered in this study with a view to 

analyse the natural insect pest population build-up in relation 

to weather parameters. Rice variety 'Annada' has been 

utilised for the experimental purpose. The sampling method 

employed to obtain the counts from the experimental field is 

adapted from Daorai et al (2005) and . The Arbab (2014)

experimental field has been divided into four strata and from 

each stratum, one square metre area has been selected 

randomly. The total count of an insect pest from those four 

selected areas is noted as the count of that insect pest for that 

particular day. The same sampling procedure is repeated at 

three days' intervals during the period under observation. 

Table 1 briefs the basic characteristics of the insect pest 

counts. Daily data pertaining to five weather variables (viz. 

T , T , RH , RH  and Rainfall) have been obtained from max min max min

Gramin Krishi Mausam Sewa (GKMS), Uttar Banga Krishi 

Viswavidyalaya, Pundibari for the same period (2011 to 2017).

Count Data Regression Models

Poisson regression model: The Poisson regression model, 

which allows the intensity parameter µ to depend on the 

explanatory variables (regressors), is often considered as 

the benchmark model for modelling count data. Even though 

this model is constrained to the restrictive assumption of 

equi-dispersion, it still dominates the sphere of count data 

regression modelling due to its simpler form and flexibility of 

re-parameterisation into other forms of distributional 

functions. In this model, the count response variable Y 

follows a Poisson distribution with the probability mass 

function (pmf)
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BIC = −2lnL    + kln(n)(  )θ   
^

where E(Y) = V(Y) = µ. In the log-linear version of the 

model, the mean parameter is parameterised as  = exp ( μ  + β0

β  + β + ...+ β1 1 2 2 k k μX X X ) to ensure  > 0.

Negative binomial regression model: The negative 

binomial regression model introduces a dispersion 

parameter to accommodate for the unobserved 

heterogeneity present in the count data. In literature, there 

exist different parameterisations leading to the generation of 

different types of negative binomial models. The most 

popular one among these can be mathematically expressed 

as

where E(Y) = µ, V(Y) = µ (1+ µ) and  denotes the α α

dispersion parameter. For  = 0, the mean and variance will α

be equal, i.e. E(Y) = V(Y) = µ, resulting in the distribution to be 

a Poisson. For  > 0, the variance will exceed the mean, i.e.  α

E(Y) < V(Y), leading to over-dispersion.

Generalised Poisson regression model: The generalised 

Poisson regression model is a natural extension of the 

standard Poisson regression model. It includes a dispersion 

parameter, which adjusts for both under-dispersion and over-

dispersion. The count response variable Y follows a 

generalised Poisson distribution with pmf specified as 

(Famoye et al 2004)

where E(Y) = µ, V(Y) = µ (1+ µ)  and  denotes the α α2

dispersion parameter. Similar to the negative binomial 

regression model,  = 0 reduces the distribution into Poisson. α

For  > 0, and  < 0, it will adjust for over-dispersion and α α

under-dispersion, respectively. Concerning the mean-

variance structure, this model possesses substantial 

similarity with the generalised event count (GEC ) model k

proposed by Winkelmann and Zimmermann (1994).

Modified Poisson quasi Lindley regression model: - Grine 

and Zeghdoudi (2017) have first introduced a mixed Poisson 

distribution, namely Poisson quasi-Lindley distribution, by 

compounding the Poisson distribution with the quasi-Lindley 

distribution. Being motivated by the approach of the 

generalised linear model, Altun (2019) has further proposed a 

re parametrisation of the already developed Poisson -

quasi Lindley distribution by  its pmf. The - putting  in           

pmf of the modified Poisson quasi Lindley - distribution is given 

by

P  (Y= y)  =
e−µµy

y!
, y = 0, 1, 2, …

P  (Y= y)  =
Γ(y + α−1)

Γ (y+ 1)Γ(α−1)
(

α−1

α−1 + µ
)α−1

(
µ

α−1 + µ
)y ,

y = 0, 1, 2, … , α ≥ 0

θ =
(2+α)

(1+α)µ

V (Y) =   µ +
µ2

 (2+α)  2
(2 + 4α + α2)where E(Y) = µ and  . As                                      the 

variance of this distribution is always greater than its mean, it 

can be a great pick for modelling the over-dispersed data 

sets. However, the dispersion of this distribution, as 

expressed in the variance function, does not depend only on 

α ., but also on µ

The parameters of all the count data regression models 

employed in this study have been estimated by the method of 

maximum likelihood (Famoye et al 2004, Cameron and 

Trivedi 2013).

Comparative assessment: The performance of the count 

data regression models is assessed in terms of two common 

information criteria (Bozdogan 2000, Altun 2019), viz., the 

Akaike information criterion (AIC) and the Bayesian 

information criterion (BIC). In estimating the amount of 

information loss, AIC deals with the trade-off between the 

goodness of fit and the simplicity of the model. AIC is 

mathematically expressed as

where L( ) is the log-likelihood value and k is the number θ

of model parameters. Similar to AIC, BIC is also a penalised-

likelihood criterion and is defined as

where n is the number of observations. L( ) and k have θ

the same meanings as above. Models with the lowest AIC 

and BIC values are considered best.

RESULTS AND DISCUSSION

To test for normality, the Shapiro-Wilk test (Yap and Sim 

2011) has been employed.  reflects the strong Table 2

rejection of normality for all three cases despite the large 

sample size (>30). This significant result clearly indicates the 

possible effective implementations of the count data 

regression models to these data sets.

Since the pest count of the current day depends on the 

weather of preceding weeks, weather variables are 

considered accordingly. However, these variables are 

usually related in a linear fashion. Hence, principal 

component analysis (PCA), which is basically a 

dimensionality reduction technique, has been employed to 

handle the problem of multicollinearity. As the emergence 

pattern of the hoppers (BPH and GLH) varies from GB, 

different sets of weather observations have served as inputs. 

Bartlett's sphericity test (Bucci et al 2018), which compares 

P  (Y= y)  =
(2 + α)

(1 + α)2µ  
α +  (2 + α)   (µ +αµ)

 

−1

 

(y+ α +1)

  
[1 +

  
y+2

 , y = 0, 1, 2, … , α > 0, µ > 0

{                                                                   }

(  )AIC = −2lnL  θ   + 2k^

= 0, otherwise

= 0, otherwise

= 0, otherwise

^

^
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P  (Y= y)  = (
µ

1 + αµ
)y

(1 + αy)y−1

y!
exp  

µ  (1+ αy)

(1+ αµ)
, y = 0, 1, 2, …

= 0, otherwise

[                    ]

 (2 + α) (µ +αµ)−1]



Insect pest Total no. of observations Period under observation in each year Mean Variance

GB 84 45 DAT – 78 DAT 7.31 9.42

BPH 119 15 DAT – 63 DAT 114.12 757.79

GLH 119 15 DAT – 63 DAT 228.57 1861.84

Table 1. Characteristics of the insect pest count

Start year: 2011; End year: 2017; DAT: Days after transplanting  

Insect pest Statistic p-value

GB 0.947 0.002

BPH 0.928 <0.001

GLH 0.936 <0.001

Table 2. Results of the Shapiro-Wilk test

Insect pest Statistic p-value

GB 361.044 <0.001

BPH and GLH 620.092 <0.001

Table 3.  Results of the Bartlett's test of sphericity

the sample correlation matrix to the identity matrix, has been 

applied before proceeding to PCA in order to check whether 

there is a redundancy between the weather variables that 

can be summarised with fewer factors.  The results (Table 3) 

confirm the appropriateness of PCA application to the 

present data.

PCA has been carried out using the ten weather variables 

(five weather variables of each 31 DAT – 37 DAT and 38 DAT 

– 44 DAT for GB, and of each 1 DAT – 7 DAT and 8 DAT – 14 

DAT for BPH and GLH) for feature extraction of the weather 

data. The sensitivity of weather variables is evaluated in 

terms of principal component loadings, which are nothing but 

the correlations among the PC scores and the attributing 

weather variables. For a better interpretation of factor 

loadings, principal components (PCs) are obtained by 

varimax rotation. As the retention criterion, PCs with Eigen 

Insect pest Period considered in each year Variable PC1 PC2 PC3

GB 38 DAT – 44 DAT Tmax -0.722 0.173 0.450

Tmin -0.028 0.126 0.777

RHmax 0.887 0.053 0.162

RHmin 0.881 -0.017 0.091

Rainfall 0.731 -0.005 0.189

31 DAT – 37 DAT Tmax 0.076 -0.745 0.386

Tmin 0.347 0.029 0.760

RHmax 0.137 0.834 0.316

RHmin 0.040 0.827 0.297

Rainfall -0.105 0.589 0.001

% of variance explained 35.76 31.31 25.92

BPH and GLH 8 DAT – 14 DAT Tmax 0.505 -0.662 0.323

Tmin 0.680 0.305 0.418

RHmax 0.265 0.852 0.077

RHmin 0.295 0.826 0.159

Rainfall 0.100 0.727 0.066

1 DAT – 7 DAT Tmax -0.233 0.067 0.880

Tmin 0.636 0.458 0.397

RHmax 0.837 0.259 -0.155

RHmin 0.853 0.237 -0.107

Rainfall 0.635 -0.066 -0.147

% of variance explained 36.74 33.09 18.04

Table 4. Loadings of the selected principal components

values higher than one are further considered for the 

regression analysis (Jolliffe and Cadima 2016).  Table 4

provides the loadings of the retained PCs. All the ten weather 

variables are included in the three selected PCs in both 
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cases. Only a few variables have displayed the high loading 

within each PC. In the case of GB, PC  has accounted for 1

35.76 per cent of variations in the input data and has loadings 

of more than 0.7 with a combination of T , RH , RH  and max max min

rainfall of 38 DAT – 44 DAT. PC  on the other hand, has 2

explained 31.31 per cent of the total variation by extracting 

the information from the same weather variables (T , RH , max max

RH  and rainfall) but of 31 DAT – 37 DAT. PC  depends on min 3

T  of both 31 DAT – 37 DAT and 38 DAT – 44 DAT  to explain min

25.92 per cent of the variation. However, in the case of BPH 

and GLH, PC  has accounted for 36.74 per cent of variations 1

by exhibiting higher loadings with T , RH , RH  and min max min

rainfall of 1 DAT – 7 DAT and T  of 8 DAT – 14 DAT.  PC  has min 2

explained 33.09 per cent of variations and has higher 

loadings with a combination of T , RH , RH  and rainfall of max max min

8 DAT – 14 DAT. PC  relies on T  of 1 DAT – 7 DAT to 3 max

account for 18.04 per cent of variations in the input data. In 

both cases, the retained PCs cumulatively explain around 90 

per cent of the input data variations.

In the next step, to find out the best model under each 

count data regression set up, the stepdown method has been 

employed. In our study, the stepdown regression procedure 

starts with considering all the retained PCs in the model, i.e. 

with a full model and then, variable selection and model 

building are carried out simultaneously. For GB and GLH 

count data, the final model consists of PC  and PC  as 2 3

explanatory variables in all the regression set-ups under 

investigation. However, in the case of BPH count data, PC  1

and PC  comprise the final models. To examine whether the 2

over-dispersion test provides any reliable guidance for model  

selection, we have applied the over-dispersion test to all the 

count data sets under study. Table 5 deciphers the presence 

of overdispersion in BPH and GLH count data sets indicating 

that in both these cases, the models with the ability of 

accommodating over-dispersion (Negative binomial 

regression model, Generalised Poisson regression model 

and Modified Poisson quasi Lindley regression model) may -
perform better than the model assuming equi-dispersion 

(Poisson regression model .)

The parameter estimates of the Poisson regression, 

negative binomial regression, generalised Poisson 

regression and modified Poisson quasi Lindley regression -
models are obtained in the next step and provided in Table 6-

Insect pest Statistic p-value

GB 1.272 0.207

BPH 11.603 <0.001

GLH 10.153 <0.001

Table 5. Results of the over-dispersion test

Insect pest Parameter Estimate Standard error p-value

GB β0 3.034 0.024 <0.001

β2 -0.037 0.004 <0.001

β3 0.036 0.002 <0.001

BPH β0 4.737 0.008 <0.001

β1 -0.028 0.001 <0.001

β2 0.013 0.002 <0.001

GLH β0 5.431 0.006 <0.001

β2 0.028 0.001 <0.001

β3 0.009 0.001 <0.001

Table 6. Parameter estimates of the poisson regression models

Insect pest Parameter Estimate Standard error p-value

GB β0 3.032 0.032 <0.001

β2 -0.038 0.016 0.017

β3 0.037 0.017 0.029

Dispersion 0.039 0.031 0.208

BPH β0 4.734 0.023 <0.001

β1 -0.025 0.007 <0.001

β2 0.012 0.005 0.016

Dispersion 0.049 0.022 0.026

GLH β0 5.425 0.017 <0.001

β2 0.031 0.007 <0.001

β3 0.012 0.006 0.045

Dispersion 0.031 0.014 0.031

Table 7. Parameter estimates of the negative binomial 
regression models

Insect pest Parameter Estimate Standard error p-value

GB β0 3.029 0.026 <0.001

β2 -0.036 0.012 0.003

β3 0.040 0.014 0.004

Dispersion 0.018 0.011 0.102

BPH β0 4.729 0.020 <0.001

β1 -0.023 0.005 <0.001

β2 0.015 0.003 <0.001

Dispersion 0.014 0.006 0.019

GLH β0 5.421 0.011 <0.001

β2 0.034 0.005 <0.001

β3 0.011 0.004 0.006

Dispersion 0.008 0.004 0.026

Table 8. Parameter estimates of the generalised Poisson 
regression models
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Fig. 1. Observed and the Poisson regression model predicted GB counts for the years under study

Fig. 2. Observed and the modified Poisson quasi-Lindley regression model predicted BPH counts for the years under study

Fig. 3. Observed and the modified Poisson quasi-Lindley regression model predicted GLH counts for the years under study

Insect pest Parameter Estimate Standard error p-value

GB β0 3.033 0.035 <0.001

β2 -0.035 0.015 0.019

β3 0.034 0.016 0.034

Dispersion 0.446 0.378 0.238

BPH β0 4.736 0.024 <0.001

β1 -0.023 0.006 <0.001

β2 0.011 0.004 0.006

Dispersion 0.028 0.014 0.046

GLH β0 5.428 0.019 <0.001

β2 0.026 0.006 <0.001

β3 0.013 0.005 0.009

Dispersion 0.014 0.007 0.049

Table 9. Parameter estimates of the modified Poisson 
quasi-Lindley regression models

9 β β0 i respectively, where  denote the intercept term and  ( 1, i= 

2, 3) represents the coefficient of the i PC.th 

The comparative assessment (Table 10) reflects that the 

modified Poisson quasi-Lindley regression model has 

provided better results than all other count data regression 

models in presence of over-dispersion. The Poisson 

regression model has failed to account for over-clearly 

dispersion in the case of BPH and GLH data sets (Table 6). 

The significance of regression parameters has exhibited an 

upward bias due to the under-estimation of standard errors 

(Berk and MacDonald 2008). However, as no over-

dispersion is evident in the GB data set, the Poisson 

regression model has outperformed all of its counterparts. As 
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the estimation procedure of these models is directly linked to 

the existence of over-dispersion of the count response 

variable conditional to the explanatory variables (Cameron 

and Trivedi 2013), the detection of over-dispersion is of prime 

importance to ensure that the inferences drawn from the 

employed count data regression model are appropriate. The 

mean and variance values of GB count are somewhat 

comparable, whereas in case of BPH and GLH counts, there 

exist substantial differences indicating possible over-

dispersion, which has further been confirmed from the results 

of the over-dispersion test. Year-wise observed and fitted 

counts for the three rice insect pests under study by the 

respective best-fitted model are graphically represented in 

Figure 1-3, respectively.

CONCLUSIONS 

Among the count data regression models under 

investigation, the recently developed modified Poisson 

quasi Lindley regression model has empirically -
outperformed all of its counterparts in handling over-

dispersion.  However, the Poisson regression model has 

provided better result when no over-dispersion is evident. We 

also find that the over-dispersion test plays a fairly good role 

in providing reliable guidance on the presence of over-

dispersion. Even though the weather-based modified 

Poisson quasi Lindley regression model has satisfactorily -
accommodated for over-dispersion, the scope still remains 

for further modification and exploration to predict the over-

dispersed count response variable more accurately.
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