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Abstract: In all types of agriculture practises, RS and GIS are frequently utilised to explain events, anticipate consequences, and plan tactics. 
The user can examine, evaluate, and comprehend multiple geographically referenced data using such a system. When the two are combined, 
the user has vast geographic knowledge about any region. Modern geospatial tools such as Remote Sensing (RS), Geographic Information 
System (GIS), and Global Positioning System (GPS) have provided extremely powerful methods for surveying, identifying, classifying, 
mapping, monitoring, characterization, and tracking changes in the composition, extent, and distribution of a variety of earth resources, both 
renewable and non-renewable, living and nonliving in nature. The potential of advanced satellite systems for sustainable agriculture 
development is investigated, as well as the fusion of GIS and remote sensing knowledge for precision farming, natural resource management, 
and land management. The capability of RS and GIS for monitoring and managing natural resources at multi-temporal, multi-spectral, and 
multi-spatial resolution was examined. Remote sensing is quite useful for assessing rates and trends, but GIS is particularly useful for 
evaluating the causes and implications. However, combining such spatial technologies with other analytical methodologies is frequently useful 
in order to generate better knowledge about potential implications and improve our understanding of natural resource management. Natural 
resource managers can better comprehend and interact with remote sensing scientists to create and implement remote sensing science to 
achieve productive monitoring by utilising such advanced technologies.
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The world's population continues to rise, with a projected 

population of 10.0 billion by 2050. In this sense, cost-effective 

food production is a critical goal, and remote sensing and 

geographic information systems, which are used to evaluate 

and visualise agricultural surroundings, have shown to be 

extremely valuable to the farming community as well as 

industry. It plays an important role in agriculture around the 

world, assisting farmers in boosting production, lowering 

costs, and better managing their property. Geographic 

information systems (GIS) have been widely used and 

regarded as a useful and strong tool for detecting changes in 

land cover and land use (Marshet et al 2019).The remote  

sensing technique collects geographical data scientifically 

for large areas at a low cost, and as a result, it has become 

the standard method for collecting natural and agricultural 

data surveys in recent decades. The ambiguity of spatial data 

of agricultural parameters, which is required for crop 

modelling, is resolved to some extent by remote sensing 

(Kumari 2020). To estimate agricultural yield locally and 

internationally, a variety of RS and GIS methodologies were 

integrated. Using RS and GIS data, studies were conducted 

to estimate canopy density, biomass, canopy characteristics, 

and soil parameters, which were then combined with several 

crop models. Using Geographic Information Systems (GIS) 

and Remote Sensing (RS) techniques, it is possible to store 

and interpret complex geo-referenced and themed layers 

acquired from numerous sources on a computer. This will 

deliver precise information to decision makers in a short 

amount of time and at a cheaper cost (Kumari 2020). These 

methods reduce the use of water, pesticides, and herbicides, 

maintain soil fertility, and aid in the efficient use of manpower, 

so increasing productivity and improving quality (Talaviya et 

al 2020). New technologies that are not only cost-effective 

but also in line with the country's natural climatic regime; 

technologies relevant to rain-fed areas specifically; 

continued genetic improvements for better seeds and yields; 

data improvements for better research, better results, and 

sustainable planning; bridging the gap between knowledge 

and practise; and judicious land use resource surveys, 

efficient management, and judicious land use resource 

surveys, efficient management, and judicious land use 

resource surveys, efficient management, and judicious land 

use resource.

Sustainable agricultural production is dependent on the 



wise use of natural resources (soil, water, livestock, plant 

genetics, fisheries, forest, climate, rainfall, and topography) 

in accordance with current socioeconomic infrastructure. 

Technology has a critical role in developing countries' rapid 

economic growth and social transformation.

GIS and Remote Sensing Application in Various Sector

Horticulture crops assessment: India is the world's 

second-largest fruit and vegetable grower. Inventory of fruits, 

vegetables, plantation crops, crop health, disease mapping, 

yield modelling and year-to-year changes, site suitability, and 

post-harvest research are all done with Indian satellite 

sensors such as AWiFS, LISS-III, and IV. Although remote 

sensing data has been used to measure yield and production 

for crops such as potato, mango, citrus, and banana, 

accuracy is still a challenge for other crops due to scattered 

and tiny fields, mixed cropping, many seasons, and short 

duration. The utilisation of satellite data and GIS tools, on the 

other hand, has shown considerable potential for horticulture 

development, particularly in terms of infrastructure and 

horticultural extension. The investigations are mostly based 

on high resolution or hyper spectral remote sensors and time 

series analysis for crop inventory and production projections. 

Phases Time series Remarks

Airborne remote sensing During the First and Second 
World Wars

The use of photographs for surveying, mapping, reconnaissance and 
military surveillance

Rudimentary spaceborne satellite 
remote sensing

In the late 1950s The launch of Sputnik 1 by Russia in 1957 and Explorer 1 by US in 
1958

Spy satellite remote sensing During the Cold War 
(1947–1991)

Remote sensing for military use spilled over into mapping and 
environment applications

Meteorological satellite sensor 
remote sensing

1960˜ The launch of the first meteorological satellite (TIROS-1) by the US in 
1960. Since then, data in digital formats and the use of computer 
hardware and software

Landsat 1972˜ Landsat 1, 2, and 3 carrying a multispectral scanner; Landsat 4 and 5 
carried a Thematic Mapper sensor; Landsat 7 carries an Enhanced 
Thematic Mapper; Landsat 8 carries the Operational Land Imager. 
Landsat satellites have high resolution and global coverage. 
Applications were initially local and have become global since then

European Space Agency's first 
Earth observing satellite program

1991˜ The European Space Agency launched the first satellite ERS-1 in 
1991, which carried a variety of earth observation instruments: a 
radar altimeter, ATSR-1, SAR, wind scatter meter, and microwave 
radiometer. A successor, ERS-2, was launched in 1995

Earth observing system (EOS) Since the launch of the Terra 
satellite in 1999

Terra/Aqua satellites carrying sensors, such as MODIS and taking 
measurements of pollution in the troposphere (MOPITT). Global 
coverage, frequent repeat coverage, a high level of processing, easy 
and mostly free access to data

New millennium Around the same time as EOS Next generation of satellites and sensors, such as Earth Observing-1, 
acquiring the first spaceborne hyperspectral data

Private industry/commercial 
satellite systems

2000˜ 1. Very high-resolution data, such as IKONOS and Quick bird 
satellites
2. A revolutionary means of data acquisition: daily coverage of any 
spot on earth at a high resolution, such as Rapid eye
3. Google streaming technology allows rapid data access to very 
high-resolution images
4. The launch of GeoEye-1 in 2008 for very high-resolution imagery 
(0.41 m)

Microsatellite era and satellite 
constellations

2008˜ 1. Small satellites and satellite constellation (Rapid Eye and Terra 
Bella, formerly Skybox): Rapid Eye was launched in August, 2008, 
with five EOS. These are the first commercial satellites to include the 
Red-Edge band, which is sensitive to changes in chlorophyll content. 
On March 8, 2016, Skybox imaging was renamed to Terra Bella. 
Satellites provided the ability to capture the first-ever commercial 
high-resolution video of Earth from a satellite and the ability to capture 
high-resolution colour and near-infrared imagery
2. For the first time, Russia carried out a single mission to launch 37 
satellites in June of 2014
3. ESA launched the first satellite of the Sentinel constellation in April 
of 2014.
4. SpaceX reusable rocket capacity since December of 2015
5. Current satellites in high revisiting period, large coverage, and high 
spatial resolution, up to 31 cm

Table 1. Evolution and advancement in remote sensing sensors
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Hyper spectral sensors, in particular, allow us to detect the 

energy reflected from the sun in multiple channels (typically 

more than 200). It is possible to generate the spectral 

signature of the targets of interest with great precision and 

then characterise them radio metrically in this way. It is critical 

to use the Indian Remote Sensing Satellite (IRS)-ID Linear 

Imaging Self-Scanning (LISS)-III sensor to estimate the 

productivity of fruit and vegetable crops cultivated. The 

optimal method is to use a Supervised Maximum Likelihood 

Classifier (MLC) plus a visual interpretation of the texture 

from a PAN (panchromatic) sensor.

For hyper spectral, a portable hyper spectral camera was 

demonstrated, as well as an object-oriented software 

framework with models that identified crop, soil, and weed; 

the study case was sugar beet and green citrus (Talaviya et al 

2020). Site-specific crop management (SSCM) is a type of 

precision agriculture that is commonly used in row crops, 

although it is rarely used in fruit and nut production. High-

resolution satellites, hyper spectral imaging, LIDARS, UAVs, 

and other technologies; as well as GIS spatial modelling for 

fruit orchards (Talaviya et al 2020). However, sensors and 

platforms with higher resolutions, free-access collection 

imagery (i.e. Sentinel-ESA and Landsat-NASA), aircraft-

mounted sensors, UAVs, the power of computational 

processing, fusion data, the mayor accesses to digital big 

data, and historical yield information all point to a bright future 

for GRS in horticulture.Due to the distributed and small field 

sizes, as well as the comparably short period of vegetable 

crops and mixed cropping in India, satellite RS technology for 

horticulture crops has some obstacles. Improved 

observations from hyperspectral, thermal infrared sensors, 

and advanced radars or LIDARs on-board forthcoming 

satellites have a significant potential for application in this 

industry. Estimating yields, particularly for orchard crops, 

was difficult.

Crop inventory: Crop discrimination is based on the 

differential spectral response of distinct crops in a multi-

dimensional feature space generated by different spectral 

bands, time domain, or both, and is influenced by sensor 

features and pattern recognition techniques. Visual or digital 

interpretation approaches are used to do crop 

discrimination/mapping utilising space data. Standard FCC 

(False Color Composite) created using green, red, and near-

IR wavelengths assigned blue, green, and red colours is 

used in most visual approaches. Over a research site in 

Imperial Valley, California, it was established that a colour 

composite formed by the best three bands (TM bands 3, 4 & 

5) provided superior discrimination than normal FCC. Digital 

approaches are recommended for crop discrimination 

because they apply to each pixel and employ the entire 

dynamic range of data. When single-date data does not allow 

for effective crop differentiation, a multi-temporal technique is 

applied (Kumari 2020). The approach in this case consists of 

three stages: (a) pre-processing, (b) data compression, and 

(c) image categorization. Multispectral and multi-temporal 

data, as well as supervised and unsupervised classification 

approaches, are employed for crop identification and 

classification. In supervised classification, training sets are 

given to categorise pixels of a specific class, and then the 

image's Information classes (i.e., crop type) are identified. 

"Training signatures" are what they're called. Unsupervised 

classification, on the other hand, is a technique that analyses 

a large number of unknown pixels and separates them into 

groups based on spectral groupings found in the image data. 

Analyst-specified training data is not required for 

unsupervised classification. The so-called "regression 

estimator," which has been recommended, is one of the 

practical approaches of using remote sensing in agricultural 

statistics. The procedure entails pre-processing satellite data 

to remove radiometric and geometric inaccuracies, as well as 

classification of the data using supervised methods that 

include classifier training using sample segments. The area 

frame sampling and image processing results are statistically 

connected and used to create an enhanced area estimate 

per crop in each stratum in this method (Singh 2017).

Assessment of crop condition: The condition of cereal 

crop seedlings, as well as the status and trend of their growth, 

can be determined via remote sensing. It also aids in the 

gathering of crop production data. When large-scale 

commissariat shortages or surpluses occur, obtaining crop 

condition information early in the crop growth cycle is even 

more crucial than obtaining actual production after harvest. 

Obtaining crop condition as soon as feasible has a significant 

impact on decisions regarding commissariat price, 

circulation, and storage. In western industrialised countries, 

particularly the United States, remote sensing technology is 

being used to monitor crop conditions. The "Large Area Crop 

Inventory Experiment (LACIE)" programme was carried out 

by the United States Department of Agriculture (USDA), the 

National Oceanic and Atmospheric Administration (NOAA), 

the National Aeronautics and Space Administration (NASA), 

and the United States Department of Commerce (USDC) 

from 1974 to 1977. Wheat is the principal monitoring crop in 

the programme, with the United States, Former Russia, and 

Canada as the monitoring areas. The "redirected from 

Agriculture and Resources Inventory Surveys through 

Aerospace (AgRISTARS)" initiative, which ran from 1980 to 

1986, brought these departments back together. In 1986, a 

global scale operational crop monitoring system was built as 

a result of that effort. The system not only assessed crop 
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conditions and predicted production for a variety of crops 

(including wheat, rice, maize, soybean, and cotton) in the 

United States, but it also kept track of the world's major food 

producers, including Former Russia, Canada, Mexico, 

Argentina, Brazil, China, India, and Australia. The system's 

operation generates significant economic benefits for the 

United States. Following that, under the "Monitoring 

Agriculture with Remote Sensing (MARS)" programme, the 

European Union's Joint Research Centre (JRC) developed 

its own crop production estimation method. The system's 

monitoring results were used in the European Union's 

common agricultural policy, such as agricultural subsidies 

and the verification of farmers' declarations. During that time, 

scientists in the field all over the world focused on crop 

monitoring methods using NOAA/AVHRR, and significant 

progress was made. 

High-resolution meteorological satellites can collect data 

on terrestrial processes on a daily basis, allowing for 

continuous and dynamic crop monitoring. The NDVI profile of 

crops is created by collating NDVI values along time lines and 

can indicate the shift in crop NDVI from planting, seedling, 

tassel, maturation, and harvesting. Varied crops have 

different NDVI profiles, and even the same crop growing in 

different conditions has different NDVI profiles. By evaluating 

the characteristics of the crop's time series NDVI profile, the 

crop's status and growth trends can be determined. Crop 

Growing Models allow for the dynamic monitoring of the crop 

growing process by simulating the crop growing process. The 

basic concept of a crop growing model is to use a 

mathematical formula to represent the crop growing process. 

The interception of solar energy for vegetation canopy and 

photosynthesis, which produces dry biomass, is the driving 

force behind all crop growing models. SUCROS (Simple and 

Universal Crop Growth Simulator), (Modules of all Annual 

Crop Simulator), CERES (Crop Environment Resource 

Synthesis), and P-1/2/3 are some of the most prominent crop 

growing models. Some of these models concentrate on the 

commonality of all crops, while others concentrate on the 

specialisation of various crops. Researchers in the field have 

been working hard in recent years to build new models such 

as ORYZA, SERES-RICE, and SIMRIW, among others. 

Crop-growing models can correctly portray the crop-growing 

process and monitor crop health. The advancement of 

remote sensing technology, as well as the usage of remote 

sensing data, has enabled the application of crop-growing 

models on a broad scale. However, the use of these models 

necessitates a large number of agro-parameters, and the 

model must be calibrated using local field data before being 

used in multiple locations. The lack of local agro-parameters 

and observable field data, as well as its complexity, limit the 

use of these models to some extent.

Identification of weeds and its management: Weeds are 

undesired plants that compete for water, nutrients, light, 

space, and carbon dioxide, reducing crop yields. Weeds 

must be controlled to satisfy future food supply demands. 

Drones, artificial intelligence, and numerous sensors, such 

as hyper spectral, multi-spectral, and RGB (red-green-blue), 

all work together to assure a superior outcome in weed 

management. It is a multidisciplinary science that 

encompasses spectroscopy, optics, computer science, 

photography, satellite launch, electronics, communication, 

and a variety of other disciplines. Future concerns like as 

food security, sustainability, supply and demand, climate 

change, and herbicide resistance may be addressed through 

machine learning-based technology. The integrated weed 

management (IWM) method, which combines numerous 

treatments, is a step toward addressing difficulties 

associated with traditional tactics, such as herbicide 

resistance (MacLaren et al 2020, Hu et al 2020). In early-

season agronomic settings, where crop and weed seedlings 

have identical spectral signatures, UAV photography aids in 

better categorising findings (Castro et al 2018). By detecting 

weeds early in the season as a first and critical stage, 

precision farming systems can efficiently control weed 

problems while minimising operating expenses and 

environmental damage (Chlingaryan et al 2018, Torres et al 

2015). Chlingaryanet al (2018) identified multi-spectral 

remote sensing as a technique for analysing multi-temporal 

crop diseases employing three high resolutions of remote 

sensing pictures to undertake a spatio-temporal analysis of 

the impaction dynamic. The applicability of multi-spectral 

remote sensing data for disease identification in late 

occurrences and at high infection rates was demonstrated in 

this work, showing the suitability of these methods for 

disease detection in late occurrences and at high infection 

rates. Establishment of airborne multispectral techniques for 

analysing tree health problems in a citrus orchard, which can 

be combined with variable rate technology (VRT) for 

mandatory pesticide application and environmental 

modelling for pollutant reduction assessment (Mink et al 

2020). Multi-spectral photography was used to detect 

anomalies, and a spectral linear unmixing-based approach 

with site-specific agriculture was used to evaluate stress 

severity and detect past infection, according to the study. The 

data obtained through airborne multispectral imaging 

evaluation is more detailed and complete than data obtained 

visually in field experiments (Mink et al 2020). Image 

segmentation between crop and weed in a soybean field for 

weed detection using hyperspectral remote sensing revealed 

a high degree of accuracy (99.9%) for soil and plant 
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differentiation (Mink et al 2020). This research used a 

hyperspectral camera with a spectral wavelength range of 

360 to 1010 nm and a spectral resolution of 10 nm (ImSpector 

V10: Specim Ltd., Oulu, Finland). Hyperspectral imaging with 

wavelet analysis was used to classify plants for weed 

identification. The authors investigated three alternative 

plant classification approaches, including Euclidean 

distance, discriminant analysis, and wavelet coefficient, 

using hyper spectral pictures with 240 wavebands for 

spectral information. The wavelet coefficient is more useful 

for weed detection, and the validation result suggests that the 

created classification technique will be useful in the future (Li 

et al, 2021). 

The ability of HSI to detect unique spectral signatures of a 

wide range of weed species, including grasses, broadleaves, 

annuals, and perennials. In comparison to averaged 

spectrum data, models constructed with Sp spectral data can 

deliver superior outcomes for weed classification. When 

generated with Sp data, MLP is a more robust and reliable 

method than standard classification systems. The 

application of HSI in plant identification will be greatly 

enhanced by this unique approach based on Sp. This is 

particularly useful in the grazing field, where it is used in 

mixed swards of a few plant species (Li et al, 2021).

Crop water stress monitoring: The phenological stage of a 

crop is often referred to when monitoring it. The plant's 

"internal clock" is defined by a sequence of events that allows 

us to follow its evolution from emergence to senescence, 

through various levels of "greenness" that characterise the 

condition of vegetation and the accumulation of biomass in 

distinct organs. These stages vary greatly in space, 

depending on the practise management and climatic 

interactions. The use of radiometric indices such as the 

normalised vegetation index (NDVI), the normalised 

difference water index (NDWI), the global vegetation index 

(GVI), or the enhanced vegetation index EVI has piqued the 

interest of many researchers. The NDVI has a number of 

benefits: it is a stable and trustworthy indicator, and the 

spectral bands used to calculate it are available on all optical 

satellites. As a result, it is frequently utilised in science, and its 

straightforward formulation makes it accessible to non-

expert remote sensing users. NDVI maps created from 

observations made by the FORMOSAT-2 satellite every 

three days over a small 4 km x 4 km agricultural sector north 

of Mexico in the Yaqui Valley (27.263°N, 109.892°W). 

Because of the excellent spatial resolution of the photos, 

each field can be identified on these maps (8 m). Winter 

wheat is the most common. Its growth is restricted to the 

initial stages in November and December (the blue colour 

represents low NDVI values). The growth of the leaves 

begins in January–February, increasing the percentage of 

green colour recorded by the satellite in each pixel of the 

photos, with the growth peak represented in red (the highest 

NDVI values) (Seifried 2017).

During the Rabi season, the most common crops grown in 

the study region are wheat and sugarcane. This study used 

Landsat data from the 2009-10 and 2013-14 Rabi seasons. 

Crop discrimination was done using a rule-based 

classification technique because the study was limited to 

wheat. Wheat was properly identified from other classes 

using a rule-based classifier, with individual accuracy of 85 

percent and total accuracy of 90 percent (Seifried 2017). Ws 

LSWI, Ws VWSI, and Ws WSI are three satellite-based water 

stress indices that were developed separately from optical 

and thermal datasets. Using multitemporal landsat data, the 

SEBS model was also utilised to calculate daily ET. Water 

stress predictions for 2009-10 were compared to ET based 

on flux towers. The LUE model was used to examine the 

impact of water stress on productivity. Productivity was 

calculated using the water scalar, temperature scalar, and 

maximum light use efficiency. In the LUE model, the two most 

essential inputs were APAR and LUE. The LUE model was 

used to analyse the influence of water stress on wheat 

productivity using the water scalars Ws LSWI and Ws VWSI. 

Final productivity was validated with yield estimated by crop 

cutting experiment (CCE) for 2013-14 and crop statistics 

(BES) for 2009-10. Estimated FAPAR was developed using 

ground readings taken during field visits and showing a 

logarithmic relation between FAPAR and NDVI, which was 

validated and used for productivity calculation (2013-14).The 

influence of water stress on wheat productivity using two 

different water scalars, namely Ws LSWI and Ws VWSI. Ws 

LSWI indices demonstrated to be more accurate in 

assessing water stress and demonstrating its impact on 

productivity. Non-imaging chlorophyll fluorescence research 

has produced some promising results, but it can only provide 

point data measurements with restricted information on a tiny 

leaf region sensed rather than the entire leaf or canopy area, 

which is what advanced chlorophyll imaging wants to solve. 

The multi-pixel feature of larger-scale fluorescence sensing 

with imaging provides additional fluorescence fingerprints, 

allowing for full screening of all points of leaf. This benefit 

accounts for minor changes in fluorescence emission pattern 

due to a variety of plant internal variables that would be 

missed by non-imaging approaches, reducing measurement 

errors (Buschmann et al 2019).

Thermography, unlike fluorescence imaging, can show 

stomatal movement without the use of a light source 

(Vadivambal et al 2018). The thermal signal under 

investigation is a change in temperature collected in the form 
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of reflected or emitted radiation from the scanned plant. 

Thermal intensity is determined by the ambient temperature, 

with infrared radiation intensifying as the temperature rises. 

The opening and closing of stomata for gas exchange or 

cooling are common responses to changes in leaf 

temperature. The cooling process stimulates stomatal 

opening, which results in a lower temperature and heat loss 

to the atmosphere. However, nutritional availability in the soil 

and water flow within the plant determine transpiration and, 

eventually, stomatal control. Water or nutrient shortage 

affects the movement of dissolved nutrients and water from 

the soil to the roots, and then to the entire plant, where 

nutrient uptake is hindered by greater nutrient concentrations 

in the soil (Li et al 2017). As a result, the stomata close in 

order to prevent further moisture loss, and the temperature of 

the leaf surface rises. This explains why some studies 

conclude that nutrient deficiency has an impact on stomatal 

regulation and can lead to an increase in plant temperature. 

On thermal imaging, a magnesium-deficient bean plant 

displayed a greater leaf temperature under controlled 

conditions (Chaerle et al 2017). Under fertilized barley 

(Hordeum vulgare L.) had a higher temperature than well-

fertilized barley (Hordeum vulgare L.) with nitrogen as the 

reference nutrient (Tilling et al 2016).

Precision farming :  (PF) Precision agriculture (PA) is an 

integrated information and agricultural management system 

that uses a variety of technology instruments such as GPS, 

GIS, and remote sensing. Precision farming is intended (PF) 

to boost overall agricultural production efficiency while 

minimising the negative effects of chemical use on the 

environment. Precision farming aims to collect and evaluate 

data about the variability of soil and crop conditions in order to 

maximise crop input efficiency in tiny areas of the farm field. 

To achieve this efficiency aim, the field's variability must be 

controlled. A growing number of scientists, engineers, and 

large-scale crop growers are using remote sensing 

technology as part of precision farming (Liaghat et al 2018). 

In the mid-to-late 1980s, PA research began in the United 

States, Canada, Australia, and Western Europe. Despite a 

significant amount of study, only a small percentage of 

farmers have used any sort of PA technology. PA has 

primarily been implemented by modifying current field gear 

with controllers and GPS to enable spatially varied uses. The 

most common application of PA is still fertiliser application on 

a site-by-site basis. Most PA trials focused on VRT fertiliser 

and herbicide applications, several types of PA technologies 

have been tested around the world (Naiqian et al 2015). A 

base map or base data layer must be referenced in every GIS 

database. The database should ideally be linked to a large-

scale, highly accurate base map. When attempting to explore 

the true spatial relationships between features digitised from 

a small scale map and features whose coordinates were 

taken with GPS, there may be issues if the base map is 

smaller scale (quad scale or smaller).This can be a 

significant issue if a grower decides to use a GIS data layer 

that was created using small scale base maps as a reference 

point for any new data generated. Developing an accurate 

base data layer based on geodetic control and 

photogrammetric mapping is the best strategy to avoid such 

mismatch (Hendrickson et al 2020). Another facet of GIS 

support for precision agriculture is the engineering 

component, which involves translating research findings into 

operational systems that can be used on farms. GIS can help 

with this engineering effort by offering a good platform for 

storing base data, simple modelling, presenting results, 

developing a user interface, and controlling farm navigation 

when used in conjunction with GPS. A decision support 

system for operationalizing precision farming at the farm 

level can be constructed using GIS. Crop yield monitors are 

devices that measure crop yields and are fitted on harvesting 

machinery. The yield data from the monitor, as well as 

positional data from the GPS device, are captured and saved 

at regular intervals of time or distance. They also keep track 

of distance and bushels every load, as well as the number of 

loads and fields. Yield maps can be created with the use of 

GIS software. In recent years, several technologies for 

quantitatively assessing spatial correlations within and 

between layers of environmental data have been developed. 

These tools can be used to determine whether a given 

variable has a spatial pattern or structure, or if it can be 

related to other (s), and so explain and/or predict a crop's 

productive and quality behaviour. Without a doubt, simply 

visualising data has significant ramifications for our ability to 

comprehend or visualise possible relationships between, 

say, environmental variables and yield. However, we can't tell 

if the connections are meaningful or if they're veiled by other 

types of inaccuracy or stochasticity. As a result, statistical 

analysis plays a critical role here, allowing us to quantify and 

numerically characterise the spatial relationships that exist in 

the field. 

Precision farming necessitates knowledge of the average 

features of tiny, homogeneous management zones. Soil 

tests for nutrient availability, yield monitors for crop yield, soil 

samples for organic matter content, information in soil maps, 

or ground conductivity metres for soil moisture can all provide 

these average properties. In most cases, the fields are 

manually sampled along a regular grid, and the sample 

results are interpolated using geostatistical techniques. Soil, 

water, and crop variability geostatistical modelling 

necessitates the collection of a large number of samples at 
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close intervals over the agricultural area. These kinds of 

samplings are both expensive and time-consuming. The 

benefits of using remote sensing technologies to acquire 

geographically and temporally varied information for 

precision farming have been demonstrated by a number of 

researchers. Satellite-based sensors or CIR video digital 

cameras on board small aircraft can be used to collect remote 

sensing imagery for PF. Aerial, satellite, and spacecraft 

observations of the surfaces and atmospheres of the planets 

in our solar system are included in the science of remote 

sensing, with the Earth being the most frequently studied. RS 

is mainly limited to methods for detecting and measuring 

electromagnetic energy, such as visible and non-visible 

radiation that interacts with surfaces and the atmosphere. 

Planners observed RS and GIS technologies to be extremely 

useful in planning for the efficient use of natural resources at 

the national, state, and district levels. Due to considerable 

advancements made in space-borne RS satellites in terms of 

spatial, temporal, spectral, and radiometric resolutions, 

application of these technologies in the management of 

natural resources is quickly growing. Many researchers have 

debated the benefits of remote sensing technology. Remote 

sensing imagery can be used for mapping soil parameters, 

crop species classification, crop water stress detection, weed 

and crop disease monitoring, and crop yield mapping. The 

number and width of spectral bands captured by the sensor 

(multi versus hyperspectral); and spatial (high, medium, and 

low), temporal (hourly, daily, and weekly), and radiometric (8-

, 12-, and 16-bit) resolutions at which sensors collect data are 

all factors that influence the use of remote sensing in PA.

Through the use of on-board GPS and the Inertial 

Measurement Unit (IMU) technology, pattern recognition 

technology, and digital elevation models, efforts have been 

made in recent years to automate the ortho-rectification 

process. Although considerable progress has been achieved 

in automating the ortho-rectification process, it has only been 

applied to photos captured by UAVs. Images from satellites 

or piloted planes have not had the same level of success. 

High overlap (approximately 80% frontal overlap and 60% 

side overlap) between images acquired by UAVs, as well as 

GPS on board UAVs that provides detailed metadata 

describing the camera in terms of position (latitude and 

longitude) and parameters, have aided the automation of 

ortho-rectification processes for UAVs images (sensor size, 

pixel resolution and focal length).

Crop yield and production forecasting: Models that 

integrate climate, soils, and other environmental variables as 

response functions to characterise development, 

photosynthesis, evapotranspiration, and yield for a specific 

crop are among the traditional techniques of predicting 

agricultural yields during the growing season. These models 

are poor predictors when geographical variability in soils, 

stressors, or management techniques are present (Jensen et 

al 2016), despite the fact solid physiological and physical 

ideas. Because of its synoptic coverage and capacity to 'see' 

in various spectral wavelengths, remote sensing of crop 

canopies has been suggested as a potentially beneficial tool 

for agricultural monitoring (Moran et al 2017). Plant 

development, stress, and yield capacity are all expressed in 

the spectrum reflectance from crop canopies, which may be 

evaluated using spectral vegetation indices (Javid et al 2020, 

Rehman et al 2018). The Normalized Difference Vegetation 

Index (NDVI) is a vegetation indices (VI) that is a sum, 

difference, or ratio of two or more spectral wavelengths. They 

have a strong relationship with photosynthetic activity in non-

wilted plant foliage and are excellent predictors of canopy 

biomass, vigour, and stress. One of the most extensively 

used indices is vegetation monitoring using the red and near-

infrared SPOT VGT channels. Green biomass and the leaf 

area index are closely correlated with the Normalized 

Difference Vegetation Index (NDVI). Despite the spatial 

resolution of 1 km at nadir, several scientific articles have 

shown the use of SPOT VGT data in monitoring vegetation 

conditions in near real-time. Crop output is estimated by 

taking into account crop area estimates and crop yield 

estimations, which are generally subjective, expensive, and 

prone to huge errors, resulting in poor crop assessment 

(Reynolds et al, 2020). Furthermore, the obtained data may 

become available too late for decision-makers or planners in 

the country to take necessary action. Remote sensing, on the 

other hand, can aid in the macroscopical, periodic, and cost-

effective acquisition of surface information, and has 

numerous advantages in agricultural monitoring, with recent 

success (Narasimhan et al 2018, Dadhwal et al 2018, 

Bastiaanssen et al 2017, Prasad et al 2016). The Normalized 

Difference Vegetation Index (NDVI) is a critical indicator of 

vegetative growth conditions and the degree of vegetative 

cover in this study (Banair et al 2015). It's worth noting that if a 

region is covered by vegetation, the NDVI value of that area is 

positive, and it rises in tandem with the amount of vegetation 

(Zhao et al 2018). In the last two decades, a few studies have 

attempted to estimate rice yield using high-resolution remote 

sensing data (Quick bird; 0.65 m, Worldview; 0.31 m, and 

IKONOS; NIR 3.2 m, PAN 0.82 m) (Nuarsa et al, 2015), but 

their technique has run into issues with swath width and 

expensive prices (Seifried et al 2017). Similarly, due to the 

temporal resolution of Landsat data, it has been difficult to 

capture cloud-free images, making it impossible to obtain 

phenology information throughout the important crop time. 

MODIS constellations employed to retrieve agricultural crop 
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information, owing to their bigger regional size, smaller 

dataset, and faster revisiting time (Whitcraft et al 2015). 

Furthermore, the dynamics of MODIS-derived NDVI 

products are reflective of crop growth and biomass changes 

that are directly related to agricultural yield, and they have a 

direct relationship with LAI, biomass, and plant cover. 

Several studies have suggested the use of MODIS-derived 

NDVI data for agricultural yield estimation prediction, crop 

production, and monitoring (Mahboob et al 2016, Faisal et al 

2019).

Rice-SRS (simulation remote sensing) model (Jingfenget 

al, 2018) was created to approximate rice yield in China using 

remote sensing data as input. The model receives three 

types of normalised difference vegetation index (NDVI) 

inputs: (AVHRR LAC) NDVI, (AVHRR LAC) NDVI, and 

(AVHRR LAC) NDVI. (AVHRR GAC) NDVI superior 

extremely high resolution radiometer global area coverage 

and radiometric measurements NDVI advanced very high 

promise radiometer limited area coverage To achieve the 

goal, the leaf area index (LAI) is calculated separately for 

each input. With AVHRR GAC input, the proposed model 

produces good results with lower average error. In Haryana, 

India, Advanced Wide Field Sensor (AWiFS) photos were 

combined with Monteith's model to assess wheat yield (Patel 

et al 2016). To estimate wheat yield, a remotely sensed 

approximation of photo unnaturally active radiation (fAPAR) 

and every day temperature were used as inputs. The main 

disadvantage of this model is that as the heterogeneity of 

field crops increases, the model's accuracy declines. Rice 

yield is predicted using the Support Vector Regression (SVR) 

approach. There are three steps in the suggested model 

(Jaikla et al 2018). To begin, SVR is used to calculate the 

nitrogen weight of the soil. Second, SVR is used to compute 

the weight of the rice stem. Third, SVR is used to compute the 

weight of rice grains.The model's performance is measured 

in terms of mean absolute error (MAE) and mean absolute 

percentage error (MAPE), which are compared to their 

commercial model and reveal that the proposed model's 

MAPE is higher than the commercial model's but still within 

acceptable limits, i.e. 5%. To estimate the winter wheat yield 

in North China, the RS-P-YEC (Remote Sensing – 

Photosynthesis – Yield Estimation for Crop) model was 

created (Peijuan et al 2019). To collect the data, the model 

used remote sensing and meteorological data. The yield of 

the winter wheat crop was predicted using the harvest index 

and net primary productivity. The findings of model are 

compared to meteorological station observations, which 

provide an R2 of 0.817. At each crop growth stage, a 

relationship between leaf area index (LAI) and yield is formed 

(Ren et al 2019). The research area is in North China. To 

remove the influence of clouds and simulate daily crop LAI to 

obtain an average for each crop stage, the Savitzky-Golay 

filter (S-G filter) and Gaussian model are utilised. To predict 

wheat yield, a link between NDVI computed from remote 

sensing imagery and LAI is constructed. The biggest 

disadvantage is that the report does not discuss crop growth 

stage indicators. (Li et al 2018) discusses various crop 

growth monitoring indicators used to monitor wheat crop at 

various stages via remote sensing. Due to the presence of 

non-vegetation percentage and soil background, NDVI have 

limitations in vegetation monitoring. The importance of new 

vegetation indices such as the soil-adjusted vegetation index 

(SAVI), modified soil-adjusted vegetation index (MSAVI), 

enhanced vegetation index (EVI), and perpendicular 

vegetation index (PVI) in achieving accuracy in wheat crop 

yield prediction is discussed. SAVI with L=0.1 outperforms in 

heading stage even when crop cover is high, according to the 

correlation coefficient derived for all variables and LAI. Using 

Landsat 8 time series pictures, advanced machine learning 

techniques such as boosted regression tree, random forest 

regression, support vector regression, and Gaussian 

process were utilised to estimate silage maize yield (Aghighi 

et al 2018). To complete the work, the NDVI standards of all 

fodder maize fields were collected and merged into a two-

dimensional dataset for each year. The results suggest that 

machine learning techniques outperform traditional 

regression methods because they have the ability to work 

with high-dimensional composite distribution data.

Water resource management: In the conservation and 

usage of the country's water resources, remote sensing and 

GIS play a critical role. Related initiatives and cutting-edge 

remote sensing techniques must be blended with traditional 

groundwater measurement and management approaches to 

provide optimal planning and operation of water resources 

that will last into the future. Soil moisture patterns in arid 

settings are a direct indicator of the presence of water. Soil 

moisture patterns indicate the presence of water in arid 

environments. Irrigation water distribution or locations with a 

shallow water table are reflected in moist top soils. Because 

in-situ sensors make it very hard to obtain soil moisture 

information at broad spatial scales, soil moisture is rarely 

included in models. Because it is nearly hard to obtain soil 

moisture information at wide spatial scales with in-situ 

sensors, soil moisture is rarely considered in management 

decisions. Satellites with passive microwave sensors, such 

as AMSR-E, SMOS, and Feng Yung, give free global scale 

estimations of daily surface soil moisture. These sensors 

provide constant estimates of soil moisture that are 

unaffected by weather conditions. That's also why a new 

evapotranspiration (ET) method based on soil moisture 
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readings is being used. The brightness temperature 

collected by satellites is used to predict surface soil moisture 

using inversion techniques. Because the technique is not 

error-free, the satellite soil moisture had to be validated 

before it could be used to estimate other hydrological 

processes. Classic validation procedures are not technically 

possible due to the lack of in situ soil moisture measurements 

in large river basins. As a result, additional validation 

methods were required in order to increase trust in the use of 

satellite soil moisture products. To explain soil moisture 

behaviour, researchers looked at how vegetation reacts to 

soil moisture and how soil moisture reacts to rainfall. In the 

land use classes "bare soil," "rainfed," and "very sparse 

vegetation," there were strong connections between AMSR-

E surface soil moisture and TRMM rainfall. In land use 

classes, AMSR-E surface soil moisture has a strong 

association with TRMM rainfall occurrences. Furthermore, 

rather than NDVI and TRMM cumulative rainfall (rs=0.70), 

there is a substantial link between TRMM accumulated 

rainfall and the AMSR-E mean soil moisture (Spearman's 

rank correlation coefficient rs=0.74). In contrast to NDVI and 

TRMM rainfall (rs=0.70), NDVI and Mean soil moisture have 

a good connection (rs=0.85) (Muhammad et al, 

2017).Groundwater hydrology applications of Geographic 

information system (GIS) and remote sensing (RS) 

technology have gotten only a cursory examination. Water 

management requires a thorough understanding of 

geographical space and related spatial information such as 

water sources, watersheds, terrain surfaces, land use, land 

cover, rainfall, temperature, humidity, soil condition and 

composition, geology, atmospheric conditions, human 

activities, environmental data, and so on.The issues, 

importance, and long-term management of groundwater and 

freshwater are also described using geographic information 

system (GIS) and remote sensing (RS) technology (Rani et 

al, 2018). With careful consideration of source materials and 

database creation, the integration of geographic information 

systems and remote sensing techniques has permitted 

analyses of aquatic vegetation growth, salt marsh quality, 

and floodplain disturbances throughout time.

CONCLUSIONS

Remote sensing and geographic information systems 

(GIS) have shown to be useful tools for generating spatial 

information about natural resources. Soils have been greatly 

degraded as a result of the planned and indiscriminate 

exploitation of land. A reliable inventory of soils and other 

resources is needed, and it must be obtained quickly. 

Remote sensing data has shown to be an effective technique 

for mapping soil and other resources. The development of a 

new generation of high spatial resolution cameras with 

improved spectral coverage, revisit capabilities, and stereo 

viewing has opened up new possibilities in a variety of 

applications. GIS technology is causing rapid changes in 

natural resource spatial analysis and management. New 

methods for data gathering, storage, processing, analysis, 

and modelling are being developed using GIS in conjunction 

with remote sensing, GPS, and computer technology. Even 

at small farm holdings, remote sensing is quite effective in 

analysing various abiotic and biotic stresses in various crops, 

as well as in recognising and managing various crop 

concerns. It is necessary to establish a database on diverse 

crops at the state or district level using remote sensing and 

GIS techniques in order to effectively use information on 

crops for policy choices. The implantation of nano-chips in 

plant and seed tissue, which may be used in near-real time to 

monitor agriculture, is a novel and non-traditional remote 

sensing application. Clearly, these and other novel 

methodologies will emphasise the importance of remote 

sensing in agricultural science analysis in the future.
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