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Abstract: In the classical method of estimation, the GEV distribution was identified as the most appropriate model for estimating peak flood 
heights at twelve study sites in the Mahanadi River Basin This paper presents that Bayesian parametric estimates of the GEV distribution are . 
better compared to maximum likelihood estimates in estimating peak flood heights and their return periods at these sites. To arrive at this target 
Markov Chain Monte Carlo Bayesian technique is utilized to acquire parameters of GEV distribution. The estimates of Bayesian approach for 
peak flood heights and their return periods at the sites showed better predicted flood peak return periods with the Bayesian method. These 
were  shorter than estimates obtained using the maximum likelihood method for all the sites.
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Floods are frequent visitors to the Mahanadi River Basin 

(MRB) in India, causing grave harm to human society in the 

affected area. Hydrological extremes, such as floods, can be 

described using extreme value theory by estimating high 

quantiles of extreme flood levels and their return periods. In the 

classical method of estimation, Generalised Extreme Value 

(GEV) distribution was considered to be a good model for 

frequency analysis in hydrology (Nagesh and Laxmi 2021). 

The appropriate flood frequency distributions were identified for 

twenty six sites of MRB, in which the GEV distribution was 

found to be good probability model for twelve sites. The 

Maximum Likelihood Estimation (MLE) is one of the most 

widely used methods to estimate parameters of the flood 

frequency distributions (Dombry 2015, Ferreira and De Haan 

2015). The likelihood based procedure is alluring, however the 

problem is the regularity conditions that are need for the normal 

asymptotic properties related with the MLE to be justified (Alam 

et al 2019). The Bayesian procedure is a popular method of 

parametric estimation technique alternate to MLE method and 

Bayesian estimates can be considered as an improved 

estimates over maximum likelihood estimates (Reis and 

Stedinger 2005, Chandra et al 2015, Alam et al 2019). Maposa 

et al (2014) showed that Bayesian-Based estimates were 

better than Maximum Likelihood estimates for GEV distribution 

at two sites in the lower Limpopo river basin, Muzambique. 

Bayesian approach allows comparison of other source of 

information by means of prior and posterior distribution. To 

estimate the parameters of a GEV distribution and make further 

predictions of the return levels and their related return periods, 

the researcher employs Bayesian Markov Chain Monte Carlo 

(MCMC) inference, which has the advantage of not requiring 

regularity constraints. These results and forecasts are 

contrasted to those obtained using a frequentist technique 

based on maximum likelihood GEV distribution estimations in a 

block maxima framework. Ferreira and De Haan (2015) 

revealed that the block maxima approach can outperform the 

Peaks over Threshold method in some circumstances. In this 

study our key objective is to check whether Bayesian estimates 

are improved estimates over MLE.

MATERIAL AND METHODS

This section explains how the data in this paper was 

analyzed using the methodologies employed in the study. In 

the Bayesian and frequentist paradigms, the methods 

include algorithms, prior distribution methods and the 

likelihood of the framework of block maxima.

Data: In the present work, daily water level (metres) data of 

the MRB recorded thrice a day at twelve hydrometric stations 

related to the period 1971-2017 were obtained from Central 

Water Commission (CWC), Bhubaneshwar.

Generalized extreme value model: The GEV distribution is 

one of the important extreme value distributions to determine 

the occurrence of the probability of rare event in the field of 

hydrology, climatology finance, insurance etc. Let the values 

x , x , x , …., x  be the annual daily maximum flood height 1 2 3 n

observations of n independent and identically distributed 

random variable X.  As n sufficiently large, the annual daily 

maximum flood height observations approximate to GEV 

distribution. The Distribution Function of the GEV distribution 

is given by
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In which ,  and  are respectively the location, scale and μ ξσ  

shape parameters of the distribution and are estimated using 

MLE and MCMC Bayesian approach.

Bayesian model for flood frequency: The observation 

vector x= {x= x , x , x , …., x } consists of iid realizations of 1 2 3 n  

annual maximum flood heights and parameter vector ={ ,  θ σμ

and ). The posterior distribution is computed using Bayer's  ξ

Theorem         

which is usually written as

x θ π θ is a vector of observations,  is a parameter vector, ( ) 

is the prior density function ( vx) is the posterior distribution, π θ

F θ( vx) is the density of x, interpreted as the conditional 

density of  x given  The numerator is the joint density of  and θ. θ

x and the denominator is the marginal density of x. The 

symbol  now represents both a random variable and its θ

value. When the parameter  is discrete, the integral in the θ

denominator of (2) is replaced by a sum. The conditional 

density ( vx)  of  given x =x is called the posterior density, a π θ θ

quantification of our uncertainty about  in the light of data θ

(Ghosh et al 2006). A Bayesian can simply report posterior 

distribution, or report summary descriptive measures 

associated with posterior distribution. For example, for a real 

valued parameter the posterior mean θ, 

and the posterior variance  

Trivariate normal distribution 

where  is mean vector, ∑ is symmetric positive definite ϑ

covariance matrix. 

Trivariate normal distribution is considered as prior 

distribution for MCMC Bayesian approach. All the outcomes 

of the present analysis were achieved through use of R 

software packages ismev and extRemes.

RESULTS AND DISCUSSION

The analysis for twelve hydrometric sites of MRB under 

the Block Maxima approach was done and estimated 

parameters of GEV distribution using both MLE and 

Bayesian approach (Table 1). The 95% credible interval for μ 
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shows that true average of population of annual maximum 

flood heights fall in the range 3.80m-4.34m at the site with 

probability 0.95 (Table 1). According to the 95 percent 

confidence intervals for the ML estimates and 95 percent 

credible intervals for the Bayesian estimates, the shape 

parameter of the GEV distribution at Bamnidhi is not 

significantly different from zero, indicating that annual 

maximum flood heights can be modeled at the site by a light-

tailed Gumbel family of distributions. The quantile function 

and the parameter estimates from Table 1 were used to 

construct Table 2. 

Bayesian estimates of maximum flood heights are 

frequently greater than their corresponding ML estimates 

(Table 2), which is consistent with Table 1. The experimentally 

recorded maximum flood heights were compared to the 

anticipated flood heights using both Bayesian and frequentist 

techniques, and only 6m flood height that occurred during the 

disastrous floods of 1975 is greater than the 50-year flood 

level at Bamnidhi. In diagnostic plots displays empirical 

results for annual daily maximum flood heights for Bamnidhi 

site, reveal that annual peak flood heights are positively 

skewed (Fig. 1), with a maximum flood height of 6m occurring 

in 1975. The probability plot and probability density plot show 

that GEV Model is a good fit (Fig. 2). Because all of the points 

on the probability plot are extremely near to the fitted line, and 

the probability density plot shows that the GEV distribution 

imitates the empirical distribution form, as seen in Figure 2's 

histogram. Figure 3 depicts return level plot, which are 

calculated by Bayesian approach. Black line indicates return 

level for GEV distribution of observed values for Bamnidhi 

site. Red dotted lines indicate the interval for return levels 

considered different return periods. A simulation study of 

MCMC was also conducted to generate trace and 

subsequent marginal posterior densities estimated by the 

MLE method at Bamnidhi site (Figure 4). Fast convergence is 

observed in trace plots of Figure 4 and the results of posterior 

marginal densities indicate that posterior estimation of  is 

very improbable to be below 3.80m and very unlikely to be 

above 4.34m for Bamnidhi site. Similar results are obtained 

for other eleven sites.
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Fig. 1. Time series plot and Boxplot of Bamnidhi site



1-p p T ML estimate (Exceedances)* Bayesian estimate (Exceedances)*

0.9500 0.05 20 5.7422 5.9034

0.9800 0.02 50 5.8495 6.2753

0.9900 0.01 100 5.9031 6.3828

0.9950 0.005 200 5.9411 6.4665

0.9960 0.004 250 5.9508 6.4893

0.9980 0.002 500 5.9749 6.5497

0.9990 0.001 1000 5.9920 6.5968

0.9999 0.0001 10000 6.0205 6.6913

Table 2. Estimation of tail quantile and expected return levels for Bamnidhi site

ML estimates

Parameter Estimate SE 95% CI

μ 4.1388 0.1607 (3.7807 4.4969)

σ 0.9319 0.1394 (0.6213, 1.2426)

ξ -0.4917 0.1735 (-0.878,  -0.1051)

Bayesian estimates

Parameter Estimate SE 95% CI

μ 4.1399 0.0036 ( 3.8001, 4.3400)

σ 0.9900 0.0029 ( 0.7100, 1.1700)

ξ -0.3541 0.0034 (-0.6300, 0.0000)

Table 1. Parameter estimates of GEV distribution for 
Bamnidhi Site 

SE-Standard Error, CI-Confidence interval for ML estimates and Credible 
interval for Bayesian estimates
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Fig. 2.  Diagnostic plots using MLE for Bamnidhi site
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Fig. 4. Posterior density and trace plot for Bamnidhi site
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Fig. 3. Return level plot for Bamnidhi site

Bayesian estimates of the parameters are higher than ML 

estimates (Table 3). The confidence interval for the  
population average  indicates that actual population μ

average is the annual maximum heights of  Dharamjaigarh, 

Kesinga, Kotni, Manendragarh, Mohana, Pathardhi, Rajim, 

Seorinarayan, Simga, Sundargarh  and Alipilngal lies in the 

range of 4.76 - 5.53m, 6.98 – 8.76m, 6.74– 8.47m, 3.35 – 

4.16m, 2.46 – 3.05m, 4.91m – 6.40m, 4.07m – 5.31m, 8.86 – 

10.80m, 8.01 – 9.66m, 6.08 – 6.81m and 10.14 – 11.03m, 

respectively. The standard errors of parameter estimates 
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Site name MLE Bayesian

μ σ ξ μ σ ξ

Dharamjaigarh Estimates 5.150
(0.171)

0.839
(0.139)

0.224
(0.155)

5.191 
(0.004)

0.939 
(0.004)

0.2171 
(0.0035)

CI (4.767, 5.532) (0.529, 1.149) (-0.121, 0.571) (4.80, 5.61) ( 0.66, 1.33) (-0.07, 0.54)

Kesinga Estimates 7.176
(0.399)

2.235
(0.311)

-0.399
(0.134)

7.873 
(0.008)

2.190
(0.006)

-0.3701 
(0.0031)

CI (6.987, 8.765) (1.543,  2.92) (-0.699, -0.099) (6.93,  8.42) (1.77,  2.82) (-0.55,  0.00)

Kotni Estimates 7.411
(0.386)

2.12
(0.307)

-0.384
(0.163)

7.518 
(0.009)

2.183 (0.007) -0.3252 
(0.0037)

CI (6.749, 8.472) (1.435,  2.805) (-0.747, -0.021) (6.70, 8.26) ( 1.68, 2.89) (-0.61, 0.05)

Manendragarh Estimates 3.761
(0.182)

0.901
(0.135)

0.080
(0.129)

3.75 
(0.004)

0.89
(0.003)

0.10
(0.0031)

CI (3.355, 4.166) (0.599, 1.203) (-0.209, 0.369) (3.42, 4.13) ( 0.73, 1.25) (-0.09, 0.44)

Mohana Estimates 2.758
(0.131)

0.637
(0.117)

0.394
(0.173)

2.777
(0.003)

0.711
(0.003)

0.4336
(0.0040)

CI (2.465, 3.051) (0.376, 0.898) (0.007, 0.780) (2.53, 3.13) (0.48, 1.12) (0.14, 0.81)

Pathardhi Estimates 5.659
(0.335)

1.702
(0.264)

-0.518
(0.131)

5.69  
(0.008)

1.65
(0.007)

-0.4666 
(0.0034)

CI (4.913,  6.406) (1.113, 2.291) (-0.810, -0.226) (4.87,  6.16) (1.35,  2.47) (-0.77, -0.17)

Rajim Estimates 4.498
(0.278)

1.545
(0.213)

-0.239
(0.163)

4.66
(0.006)

1.50
(0.005)

-0.21
(0.0035)

CI (4.078, 5.317) (1.069, 2.021) (-0.604, 0.124) 4.14, 5.18) ( 1.22, 2.05) (-0.47, 0.13)

Seorinarayan Estimates 9.635
(0.437)

2.185
(0.323)

-0.391
(0.114)

9.81  (0.010) 2.25
(0.008)

-0.3121 
(0.0032)

CI (8.861, 10.809) (1.563,  3.006) (-0.646,-0.135) (8.78, 10.7) ( 1.79,  3.28) (-0.58, -0.01)

Sigma Estimates 8.840
(0.369)

2.160
(0.279)

0.391
(0.116)

8.850  (0.008) 2.213 (0.005) -0.3426 
(0.0025)

CI (8.017,  9.66) (1.637,  2.88) (-0.651, -0.13) (8.14,  9.55) (1.83,  2.79) (-0.52, -0.11)

Sundargarh Estimates 6.147
(0.163)

0.790
(0.122)

-0.183
(0.157)

6.432  
(0.004)

0.864 
(0.003)

-0.1607 
(0.0034)

CI (6.083, 6.812) (0.617, 1.163) (-0.533, 0.167) (6.13, 6.78) (0.74, 1.29) (-0.47, 0.13)

Alipilngal Estimates 10.589
(0.199)

2.418
(0.189)

-0.958
(0.215)

10.65
(0.008)

2.30
(0.008)

-0.93
(0.0026)

CI (10.14, 11.032) (1.974,  2.861) (-1.438,  -0.478) (9.63, 11) (1.89,  3.29) (-1.14, -0.65)

Table 3. Parameter estimates of GEV distribution for 11 sites 

using the Bayesian technique are lower than those obtained 

using the MLE approach.

Expected return levels calculated using Bayesian 

approach is greater than expected return levels calculated 

using MLE (Table 4). Credible intervals are narrow than 

confidence interval which indicates Bayesian estimates of 

GEV distribution have narrow intervals than ML estimates 

which can be considered as one of the points to highlight the 

improvisation of Bayesian approach.

Due to heavy rain and cyclonic conditions, extreme flood 

heights occurred at twelve study sites: 6, 8, 9, 11 and 12 at 

Bamnidhi (1975), Rajim (1980), Manendagarh, Mohana, 

Sundargarh, and Pathardi (1990, 1990, 1998, and 2007, 

respectively); Dhrmarjgarh (1991) and  Kotni, Kesinga, and 

Alipingal (1978, 2006, and 2011 respectively). Both 

methodologies in Table 2 and 4 were used to calculate the 

associated return periods of maximum flood heights. For the 

aforementioned sites, the findings of the Bayesian technique 

yielded return periods of 20, 10, 50, 50, 20, 200, 20, 20, 10, 2, 

10 and 200 years, respectively, implying that these 

occurrences have a very low chance of being equalized or 

exceeded at least once in the above-mentioned years.
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Site name Estimation 
techniques

Expected return periods

20 50 100 200 250 500 1000

Expected return levels (in metre)

Dharamjaigarh MLE 10.196 12.242 14.082 16.225 16.989 19.619 22.691

Bayesian 10.746 12.962 14.942 17.237 18.052 20.848 24.095

Kesinga MLE 12.245 12.625 12.830 12.985 13.026 13.133 13.214

Bayesian 12.342 12.765 12.998 13.178 13.226 13.354 13.453

Kotni MLE 11.849 12.233 12.444 12.604 12.647 12.759 12.845

Bayesian 12.284 12.794 13.086 13.318 13.382 13.554 13.691

Manendragarh MLE 7.772 8.957 9.904 10.903 11.236 12.309 13.443

Bayesian 7.834 9.080 10.090 11.165 11.526 12.697 13.947

Mohana MLE 8.381 11.594 14.906 19.249 20.917 27.141 35.316

Bayesian 7.974 10.946 14.000 17.992 19.523 25.222 32.688

Patahrdhi MLE 8.487 8.662 8.748 8.807 8.822 8.859 8.885

Bayesian 8.626 8.838 8.946 9.023 9.043 9.094 9.130

Rajim MLE 8.554 9.072 9.391 9.660 9.737 9.952 10.135

Bayesian 8.589 9.161 9.521 9.831 9.921 10.176 10.397

Seorinarayan MLE 14.358 14.762 14.981 15.147 15.191 15.307 15.395

Bayesian 14.820 15.375 15.696 15.955 16.026 16.220 16.375

Simga MLE 13.313 13.712 13.928 14.092 14.136 14.251 14.338

Bayesian 13.557 14.036 14.308 14.521 14.579 14.734 14.856

Sundargarh MLE 8.887 9.268 9.513 9.728 9.792 9.973 10.133

Bayesian 8.891 9.296 9.563 9.800 9.871 10.076 10.258

Alipingal MLE 13.047 13.086 13.099 13.106 13.107 13.110 13.111

Bayesian 13.051 13.092 13.107 13.114 13.116 13.119 13.121

Table 4. Expected return periods and return levels for 11 sites

CONCLUSIONS

Bayesian estimates are higher than ML estimates at all 

sites. For all sites, the standard errors of parameters estimated 

using MLE are larger than those of Bayesian estimates. The 

confidence intervals for MLE-estimated parameters are 

broader than credible intervals for Bayesian-estimated values. 

Non-exceedance probability is used to calculate expected 

return levels for various return periods. Return levels 

computed using the Bayesian technique is higher than those 

predicted using the MLE approach. If return levels high, we 

may take precautions right away. The, study concludes that 

Bayesian approach has improved results by allowing inclusion 

of uncertainties through priors. The outcome of Bayesian 

analysis gives better information than MLE.
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