

Structure, Composition and Distribution Pattern of Agroforestry Flora along Altitudinal Gradient in Kirtinagar Block of District Tehri Garhwal, Uttarakhand, India

Atul Negi, D.S. Chauhan and Jitendra Singh

Department of Forestry and Natural Resources Hemvati Nandan Bahuguna Garhwal University Srinagar Garhwal-246 174, India E-mail: atuInegiforestry13@gmail.com

Abstract: In this study, we investigated phytosociological attributes of traditional agroforestry systems in Kirtinagar Block of Tehri Garhwal, Uttarakhand, India. The objective of this study was to explore and compare phytosociological attributes along the altitudinal gradient of traditional agroforestry components species. Three different indigenous agroforestry systems *i.e.* agri-silviculture, silvi-pasture and homegarden were selected for documentation of agrobiodiversity through quadrat method. Further, density, frequency, IVI, and abundance-frequency ratio was calculated for each component of agroforestry system. The study reported that *Grewia optiva, celtis australis, Mallotus phillipensis, Citrus sinensis* and *Morus alba* were the most dominant tree species in the area.

Keywords: Agrobiodiversity, Altitudinal gradient, Traditional agroforestry systems, Himalaya

In India, agroforestry has been recognised as a traditional method of land usage and distributed over 11.54 m ha (3.39 %) of the total geographic area of country (FSI 2019). Numerous unsustainable farming, illicit tree felling, conversion of lands, encroachment are the principal factors have led to overexploitation of natural resources. In Indian mountainous regions, the loss of agricultural land attributed to alterations in rainfall patterns, landslides, runoff, nutrient leaching, the drying up of natural springs, and a lack of irrigation facilities has made farming unprofitable and unsubstantial. To address this, agroforestry is considered as an alternative approach to restore the environmental and livelihood security of the region. In such scenarios, integration of trees on farm boundaries, croplands, fallow lands, and village settlement etc. provides enhanced tree cover, biodiversity maintenance, improved soil health, delivery of multiple products and carbon sequestration benefits (FAO 2005). There are numerous traditional agroforestry systems in Garhwal Himalaya, Uttarakhand which is in the northern region of India. Under these systems, farmers have been cultivating a wide variety of annual, biennial, and seasonal crops. The fragile environment created by the terraced slopes and scattered agricultural land, which makes it difficult to conduct agricultural activities and even prohibits the annual demand of food grains by households (Kanwal et al 2022). Agroforestry systems are crucial for maintaining farm productivity and production, creating a resilient farming system, and improving livelihoods

and employment prospects. Additionally, agroforestry might be a useful technology in regions with subsistence farming and delicate ecosystems. Agroforestry produced a considerable sum of money that is used by the farmers to provide subsistence income for their families. This has a major impact on improving the rural areas' economies (Sangeetha et al 2016).

Traditional agroforestry systems are practiced from many decades, which combines agriculture crops along with the trees species. A significant portion of Garhwal Himalaya constitutes diversified traditional agroforestry systems. The hilly regions of Uttarakhand are primarily consisting of agrisilviculture, agrihorticulture, and agri-silvi-horticulture systems. Each of these agroforestry systems has the potential to store significant amounts of carbon while also producing fuel, fruits, fodder, fibres, and organic fertilisers (Thakur et al 2007, Bijalwan et al 2015). Due to variable terrain and climatic conditions, vegetation is complex in nature, and its structure and composition changes from place to place (Raturi 2012). Vikrant et al (2016) documented traditional agroforestry systems from Tehri Garhwal i.e., Agrisilviculture, Agri-horticulture and Agri-hortisilvicultural system and it consists of total 22 forest tree species, 11 fruit tree species, and 15 crops species in studied area. The identification of available tree species, their compositions, structure, and functions are need of the hour to design the site-specific agroforestry models to address poverty, land degradation and climate change. Therefore, a study was

567

planned with objective to document the traditional agroforestry systems Kirtinagar Block of Tehri Garhwal.

MATERIAL AND METHODS

The study was conducted in Kirtinagar Block of district Tehri Garhwal (Uttarakhand). The studied Community Development Block covers total of 153 villages and covers an area of about 264.83 km², Latitude ranges from 30°12'38" to 30°23'17" North and Longitude ranges from 78° 55'19" to 78°37'15" East. The elevation ranges from 492 m to 2712 m throughout the block from mean sea level (Fig. 1). Three different indigenous agroforestry systems i.e. agrisilviculture, silvi-pasture and home garden were selected from 300-1200 m amsl (Lower Altitude) and 1200-2000 m amsl (Upper Altitude) for documentation of agrobiodiversity. Quadrat method was adopted to access the agrobiodiversity, in which 10×10 m, 5×5 m, 1×1 m quadrates were laid out for trees, shrubs, crops and herbs, respectively. Further, density, frequency, Important Value Index (IVI), and abundancefrequency ratio was calculated for each component of agroforestry system. The quantitative analyses for frequency, density, and abundance was done by following methodology developed by Curtis and MacIntosh (1950). Other parameters such as relative frequency, relative density, relative dominance was calculated by following Phillips (1959). The importance value index (IVI) at species level was calculated from the sum of relative frequency, relative density, and relative dominance (Curtis, 1959). The ratio of abundance to frequency is generally used to interpret the distribution pattern of species (Whitford 1949). The ratio of abundance to frequency indicates regular distribution if below 0.025, random distribution between 0.025-0.05 and contagious if it is >0.05 (Curtis and Cottam 1956).

RESULTS AND DISCUSSION

Agri-silviculture: Agri-silviculture system usually comprises of fuelwood and fodder trees, which are grown along the bunds of the farmlands. Total 14 tree, 6 agricultural crops and 6 species of different herbs were found in upper altitudinal zone (1200-2000 m amsl) of study area. Whereas, 13 tree, 8 agricultural crops and 7 species of herbs were found in lower altitudinal (below 1200 m amsl) zone of the study area (Table 1). In upper altitude total tree density was 514 trees/ha, in which *Grewia optiva* had maximum tree density (186 trees/ha) and frequency (85.71), whereas minimum tree density (7 trees/ha) and frequency (7.14) was of *Ficus palmata*. Maximum IVI (94.32) recorded for *Celtis australis* and minimum IVI (3.91) was of *Nyctanthes arbortristis*. *Melia azedarach* had highest abundance frequency ratio of 0.28 and *Ficus roxburghii* had lowest (0.02). In the lower altitudinal

zone, the total tree density was 494 trees/ha, out of which *G. optiva* had maximum density (219 trees/ha) and frequency (100). Minimum tree density (6) and frequency (6.25) was of *Ficus hispida*. IVI of *G. optiva* was highest (110.39) and *Ficus cunia* had lowest IVI (3.66) among all trees. The highest and lowest abundance factor was observed for *Morus alba* (0.32) and *Grewia optiva* (0.02), respectively. The similar results were also reported by Manzoor and Jazib (2020). Vikrant et al (2018) found that the major agroforestry systems in same district were dominated by *Grewia oppositifolia*, *Celtis australis* and *Quercus leucotrichophora*.

Among agricultural crops total density was found 1000037/ha in upper altitude, in which *Eleusine coracana* had maximum density (523167), frequency (57.14) and IVI (111.31), while *Cajanus cajan* had minimum density (37038), frequency (7.14) and IVI (19.46). *Oryza sativa* had maximum abundance and frequency ratio (3.64) and *Amaranthus viridis* had minimum A/F (0.10). On the other hand, in lower elevation, crop density/ha was found 125625, in which *Eleusine coracana* had maximum density (46875), frequency (43.75) and IVI (82.13) and *Cajanus cajan* had minimum density (1875), Frequency (6.25) and IVI (10.48). Sesamum indicum had maximum abundance and frequency ratio (1.28) and *Amaranthus viridis* had minimum A/F (0.09). Mahato et al (2016) also found these species prominent in their study.

The total herb density was 80000 individuals/ha in upper altitude in which *Bidens Pilosa* had maximum density (31429), frequency (64.29), and IVI (96.14) and *Euphorbia*

Fig. 1. Digital elevation map of study area

Table 1. Phytosociological attributes of different species in Agrisilviculture system

Trees in Agrisilvicu	Ilture system	Upp	er Altitude 120	0-2000 m		Lower altitude <1200 m						
Common name	Botanical name	Density/ha	Frequency	IVI	A/F	Density/ha	Frequency	IVI	A/F			
Khair	Acacia catechu	0	0.00	0.00	0.00	13	12.50	7.67	0.08			
Kachnar	Bauhinia variegata	21	14.29	11.03	0.11	0	0.00	0.00	0.00			
Kharik	Celtis australis	136	71.43	94.32	0.03	113	56.25	68.27	0.04			
Khinna	Falconeria insignis	7	7.14	4.01	0.14	0	0.00	0.00	0.00			
Khaina	Ficus cunia	0	0.00	0.00	0.00	6	6.25	3.66	0.16			
Cluster Fig	Ficus hispida	0	0.00	0.00	0.00	6	6.25	9.15	0.16			
Dudhila	Ficus neriifolia	7	7.14	5.12	0.14	0	0.00	0.00	0.00			
Bedu	Ficus palmata	7	7.14	3.98	0.14	0	0.00	0.00	0.00			
Timla	Ficus roxburghii	43	42.86	32.58	0.02	19	18.75	15.23	0.05			
Chanchri	Ficus subincisa	29	28.57	19.94	0.04	6	6.25	9.16	0.16			
Bhimal	Grewia optiva	186	85.71	87.83	0.03	219	100.00	110.4	0.02			
Subabool	Leucaena leucocephala	0	0.00	0.00	0.00	25	18.75	16.35	0.07			
Ruina	Mallotus phillipensis	0	0.00	0.00	0.00	19	18.75	11.74	0.05			
Dainkan	Melia azedarach	14	7.14	7.25	0.28	31	25.00	20.08	0.05			
Sehtoot	Morus alba	21	14.29	9.99	0.11	13	6.25	5.53	0.32			
Parijat	Nyctanthes arbortristis	7	7.14	3.91	0.14	0	0.00	0.00	0.00			
Sandan	Ougeinia oojeinense	14	7.14	5.75	0.28	0	0.00	0.00	0.00			
Panya	Prunus cerasoides	14	14.29	10.10	0.07	0	0.00	0.00	0.00			
Asan	Terminalia elliptica	0	0.00	0.00	0.00	6	6.25	4.17	0.16			
Toon	Toona ciliate	7	7.14	4.19	0.14	19	18.75	18.60	0.05			
Crop in Agrisilvicul	ture system	Upp	er Altitude 120	0-2000 m		Lowe	er altitude <1	200 m	n			
Common name	Botanical name	Density/ha	Frequency	IVI	A/F	Density/ha	Frequency	IVI	A/F			
Marcha	Amaranthus viridis	83336	35.71	38.17	0.10	13125	37.50	38.84	0.09			
Toor Dal	Cajanus cajan	37038	7.14	19.46	1.12	1875	6.25	10.49	0.48			
Jhangora	Echinochloa esculenta	157413	14.29	48.59	1.19	30000	18.75	63.21	0.85			
Koda	Eleusine coracana	523168	57.14	111.31	0.25	46875	43.75	82.13	0.24			
Geheth	Macrotyloma uniflorum	0	0.00	0.00	0.00	6250	12.50	21.20	0.40			
Dhan	Oryza sativa	120375	7.14	51.99	3.64	0	0.00	0.00	0.00			
Till	Sesamum indicum	0	0.00	0.00	0.00	5000	6.25	21.79	1.28			
Urad	Vigna mungo	0	0.00	0.00	0.00	6875	12.50	22.58	0.44			
Ranyas	Vigna umbellata	78707	21.43	30.49	0.26	15625	31.25	39.77	0.16			
Herbs in Agrisilvic	ulture system	Upper Alti	tude 1200-200	0 m		Lowe	er altitude <1	<1200 m				
Common name	Botanical name	Density/ha	Frequency	IVI	A/F	Density/ha	Frequency	IVI	A/F			
Billygoat herb	Ageratum conyzoides	24286	50.00	78.40	0.10	31875	21.57	66.67	0.21			
Kumarr	Bidens pilosa	31429	64.29	96.14	0.08	13125	28.57	42.41	0.12			
Kana	Commelina benghalensis	2857	7.14	22.42	0.56	5000	37.50	33.53	0.07			
Ashthma plant	Euphorbia hirta	2143	7.14	17.90	0.42	8750	35.71	37.86	0.08			
Oxalis	Oxalis spp.	7857	14.29	38.46	0.39	16875	11.11	58.03	0.81			
Gaajar ghaas	Parthenium hysterophorus	0	0.00	0.00	0.00	2500	25.00	29.07	0.16			
Yellow Foxtail	Setaria pumila	11429	21.43	46.67	0.25	0	0.00	0.00	0.00			

hirta had minimum density (2143) frequency (7.14) and IVI (17.90). *Commelina benghalensis* had maximum abundance and frequency ratio (0.56) and *B. Pilosa* minimum A/F (0.08). In lower altitude total density of herbs was 79375 individuals/ha, in which *Ageratum conyzoides* had maximum density (31875) and *Setaria pumila* had minimum density of 1250 individuals/ha. *Setaria pumila* had minimum (50) and *Oxalis species* had minimum (11.11) frequency. *Ageratum conyzoides* had highest (66.66) and *Parthenium hysterophorus* had lowest (29.06) IVI. *Oxalis spp.* had maximum abundance and frequency ratio (0.81) and *Setaria pumila* had minimum A/F (0.04).

Silvi-pasture: In silvi-pastoral system, trees, grasses, shrubs, and herbs were found spread on the uncultivated land. This agroforestry system is being practiced for fuel, fodder and timber. Total 16 tree, 11 grass, 9 shrub and 8 herb species were encountered in upper altitudinal zone of study. On the other hand, 24 tree, 9 grass, 15 shrub and 13 species of herb were found in lower altitudinal zone of the study area (Table 2).

In upper altitudinal zone, total tree density was found 550 individuals/ha in which Celtis australis had highest density (143 trees/ha) and frequency (85.71). Whereas, Melia azedarach had minimum density (7 trees/ha) and frequency (7.14). Maximum IVI in C. australis (82.15) and minimum was of Morus alba (3.64). Maximum abundance and frequency ratio was of Bauhinia retusa (0.56) and minimum A/F was for Celtis australis (0.01). In lower altitudinal zone, total tree density was 569 individuals/ha in which the highest density (81 trees/ha) and frequency (43.75) was of Mallotus phillipensis and lowest density (6 trees/ha) and frequency (6.25) was recorded for Madhuca indica. IVI, was maximum (34.07) for M. phillipensis and minimum (2.95) of Leucaena leucocephala. Abundance and frequency ratio was found maximum (0.48) for Adina cordifolia and minimum (0.03) was of Celtis australis. The phytosociological attributes of C. australis, G. optiva, Lantana camara and associated species were recorded are similar to findings of Thakur et al (2004).

Total density of grasses in upper altitude was 106428 individuals/ha in which highest density (37857 individuals/ha), frequency (78.57) and IVI (79.31) was of *Apluda mutica* and lowest density (1428 individuals/ha), frequency (7.14) and IVI (8.69) was for *Brachypodium sylvaticum*. Abundance and frequency ratio was found maximum (0.98) for *Heteropogon contortus* and minimum (0.06) was of *Apluda mutica*. In lower altitudinal zone, the total density of grasses was 104375 individuals/ha in which highest density (33750 individuals/ha), frequency (56.25) and IVI (74.92) was of *Crysopogon montanus*, whereas lowest density (1857 individuals/ha), frequency (6.25) and IVI (12.48) was recorded for *Heteropogon contortus*. A/F was

maximum for *Bothriochloa ischarmum* (0.48) and minimum was of *Crysopogon montanus* (0.10). In the Garhwal Himalayan region, there are many types of grasses that grow abundantly during the rainy season. Bagwari and Todaria (2011) observed same trend about range grasses under silvipasture systems.

Density of shrubs was 2542 individuals/ha in upper altitudinal zone of study area in which maximum density (743 individuals/ha), frequency (50) and IVI (68.24) was of *Eupatorium adenophorum* and minimum density (57 individuals/ha), frequency (7.14) and IVI (13) was of *Carissa spinarum*. Abundance and frequency ratio was maximum (0.42) for *Senna occidentalis* and minimum (0.07) was of *Eupatorium adenophorum*. In lower altitude, total density of shrubs was 2825 individuals/ha in which highest density (500 individuals/ha), frequency (43.75) and IVI (40.71) was recorded for *Rhus parviflora* and lowest density (500 individuals/ha), frequency (6.25) and IVI (9.39) was of *Carissa spinarum*. Maximum abundance and frequency ratio was found in *Colebrookea oppositifolia* (0.48) and minimum A/F found in *Lantana camara* (0.04).

In upper altitudinal zone, total density of herbs was 47857 individuals/ha in which maximum density (22142 individuals/ha), frequency (57.14) and IVI (102.28) was of Bidens pilosa and minimum density (2143 individuals/ha), frequency (7.14) and IVI (20.50) was noted for Cynoglossum lanceolatum. Abundance and frequency ratio was found maximum (0.70) in Geranium lucidum and minimum (0.06) in B. Pilosa. In lower altitude the total density of herbs was 48125 individuals/ha in which maximum density (13125 individuals/ha), frequency (43.75) and IVI (63.50) was observed for B. Pilosa and minimum density (625 individuals/ha), frequency (6.25) and IVI (7.81) was of Thalictrum foliolosum. Maximum abundance and frequency ratio was of Synedrella nodiflora (0.96) and minimum A/F found was recorded for B. Pilosa (0.06). Bijalwan (2013), also mentioned same species in his study carried out in district Tehri Garhwal of Uttarakhand, India.

Homegarden: In homegardens, tree and fruit crops were the main woody components whereas crops and vegetable were main understory components. Total 17 tree, 14 crops and 5 herb species were reported in upper altitudinal zone. On the other hand, 24 tree, 11 crop and 6 species of herbs were found in lower altitudinal zone of the study area (Table 3).

In upper altitude total tree density of 564 individuals/ha was recorded, in which *Citrus sinensis* had maximum density (107 individuals/ha), frequency (57.14) and IVI (48.20) and *Phyllanthus emblica* had minimum density (7 individuals/ha), frequency (7.14) and IVI (3.73). *Ficus roxburghii* had minimum abundance and frequency ratio (0.28) and

570

 Table 2. Phytosociological attributes of different species in silvipasture system

Trees in Silvipas	ture system	U	pper Altitude	1200-2000	m		Lower altitude <1200 m			
Common name	Botanical name	Density/ha	Frequency	IVI	A/F	Density/ha	Frequency	IVI	A/F	
Khair	Acacia catechu	0	0.00	0.00	0.00	19	18.75	11.54	0.05	
Haldu	Adina cordifolia	0	0.00	0.00	0.00	19	6.25	8.97	0.48	
Dhaura	Anogeissus latifolia	0	0.00	0.00	0.00	13	6.25	8.04	0.32	
Kandi	Bauhinia retusa	29	7.14	9.69	0.56	13	6.25	7.79	0.32	
Kachnar	Bauhinia variegata	7	7.14	3.93	0.14	56	31.25	22.22	0.06	
Amaltas	Cassia fistula	0	0.00	0.00	0.00	6	6.25	7.33	0.16	
Kharik	Celtis australis	143	85.71	82.16	0.02	44	37.50	28.50	0.03	
Shisham	Dalbergia sissoo	0	0.00	0.00	0.00	6	6.25	3.23	0.16	
Khinna	Falconeria insignis	21	21.43	14.18	0.05	13	12.50	7.11	0.08	
Khaina	Ficus cunia	0	0.00	0.00	0.00	19	12.50	13.94	0.12	
Cluster Fig	Ficus hispida	0	0.00	0.00	0.00	6	6.25	3.52	0.16	
Dudhila	Ficus neriifolia	21	7.14	12.73	0.42	0	0.00	0.00	0.00	
Timla	Ficus roxburghii	50	42.86	31.43	0.03	38	25.00	16.91	0.06	
Chanchri	Ficus subincisa	14	14.29	6.87	0.07	0	0.00	0.00	0.00	
Bhimal	Grewia optiva	64	35.71	32.26	0.05	44	31.25	21.47	0.04	
Jamun	Syzygium cumini	0	0.00	0.00	0.00	19	18.75	14.17	0.05	
Bahera	Terminalia bellirica	0	0.00	0.00	0.00	13	12.50	10.13	0.08	
Harad	Terminalia chebula	0	0.00	0.00	0.00	31	12.50	13.21	0.20	
Toon	Toona ciliata	21	14.29	17.72	0.11	25	18.75	20.30	0.07	
Indrjau	Wrightia tinctoria	0	0.00	0.00	0.00	6	6.25	3.78	0.16	
Grasses in Silvip	asture system	Upper Altitude 1200-2000 m				Lower altitude <1200 m				
Common name	Botanical name	Density/ha	Frequency	IVI	A/F	Density/ha	Frequency	IVI	A/F	
Tachlu	Apluda mutica	37857	78.57	79.32	0.06	21250	37.50	53.01	0.15	
Dhaddu	Arundinella nepalensis	17143	35.71	41.63	0.13	19375	37.50	49.94	0.14	
Yellow bluestem	Bothriochloa ischarmum	5714	14.29	20.07	0.28	1875	6.25	12.49	0.48	
False brome	Brachypodium sylvaticum	1429	7.14	8.69	0.28	10000	18.75	32.29	0.28	
Salmu	Bromus inermis	2143	7.14	11.53	0.42	0	0.00	0.00	0.00	
Gurla	Crysopogon montanus	7857	14.29	25.33	0.39	33750	56.25	74.93	0.11	
Dub	Cynodon dactylon	0	0.00	0.00	0.00	3125	12.50	15.44	0.20	
Nut Grass	Cyprus rotundus	1429	7.14	8.69	0.28	0	0.00	0.00	0.00	
Finger grass	Digitaria spp.	2857	7.14	14.36	0.56	7500	18.75	26.49	0.21	
Black speargrass	s Heteropogon contortus	5000	7.14	22.85	0.98	1875	6.25	12.49	0.48	
Daba	Juncus inflexus	1429	7.14	8.69	0.28	0	0.00	0.00	0.00	
Birachu	Pennisetum species	22143	42.86	50.15	0.12	5625	12.50	22.94	0.36	
Naru		1429	7.14	8.69	0.28	0	0.00	0.00	0.00	
Shrubs in Silvipa	sture system	U	pper Altitude	1200-2000	m	Lower altitude <1200 m				
Common name	Botanical name	Density/ha	Frequency	IVI	A/F	Density/ha	Frequency	IVI	A/F	
Kingod	Berberis aristata	0	0.00	0.00	0.00	150	18.75	17.29	0.11	
Khakshu	Boehmeria macrophylla	371	21.43	41.00	0.20	300	31.25	28.04	0.08	

 Table 2. Phytosociological attributes of different species in silvipasture system

Trees in Silvipast	ture system	U	pper Altitude	1200-2000	m		Lower altitude <1200 m			
Common name	Botanical name	Density/ha	Frequency	IVI	A/F	Density/ha	Frequency	IVI	A/F	
Kharanu	Carissa spinarum	57	7.14	13.01	0.28	50	6.25	9.40	0.32	
Bhindu	Colebrookea oppositifolia	0	0.00	0.00	0.00	75	6.25	13.01	0.48	
Kala bansa	Eupatorium adenophorum	743	50.00	68.24	0.07	225	18.75	22.67	0.16	
Sakina	Indigofera tinctoria	200	14.29	27.62	0.25	100	12.50	13.34	0.16	
Lantana	Lantana camara	286	21.43	34.11	0.16	375	43.75	34.34	0.05	
Chui Mui	Mimosa pudica	0	0.00	0.00	0.00	50	6.25	9.40	0.32	
Kari Patta	Murraya koenigii	0	0.00	0.00	0.00	425	43.75	36.89	0.06	
Tungla	Rhus parviflora	400	35.71	44.13	0.08	500	43.75	40.71	0.07	
Hisalu	Rubus ellipticus	229	21.43	29.51	0.12	150	12.50	17.84	0.24	
Ameda	Rumex hastatus	171	14.29	24.73	0.21	125	12.50	15.59	0.20	
Chakunda	Senna occidentalis	86	7.14	17.66	0.42	0	0.00	0.00	0.00	
Bala	Sida cordifolia	0	0.00	0.00	0.00	75	6.25	13.01	0.48	
Bariyara	Urena lobata	0	0.00	0.00	0.00	50	6.25	9.40	0.32	
Dhaud	Woodfordia fruticosa	0	0.00	0.00	0.00	175	18.75	19.08	0.12	
Herbs in Silvipas	ture system	Upper Altitude 1200-2000 m					Lower altitude <1200 m			
Common name	Botanical name	Density/ha	Frequency	IVI	A/F	Density/ha	Frequency	IVI	A/F	
Billygoat herb	Ageratum conyzoides	0	0.00	0.00	0.00	1250	6.25	11.47	0.32	
Bukifool	Anaphalis busua	0	0.00	0.00	0.00	1875	6.25	15.12	0.48	
Kunja	Artemisia vulgaris	5000	14.29	33.53	0.25	5000	12.50	28.14	0.32	
Kumarr	Bidens pilosa	22143	57.14	102.28	0.07	13125	43.75	63.50	0.07	
Kana	Commelina benghalensis	2143	7.14	20.50	0.42	0	0.00	0.00	0.00	
Lechkumar	Cynoglossum Ianceolatum	2143	7.14	20.50	0.42	0	0.00	0.00	0.00	
Horseherb	Erigeron canadensis	0	0.00	0.00	0.00	2500	12.50	18.23	0.16	
Kaliko plant	Euphorbia heterophylla	0	0.00	0.00	0.00	2500	6.25	18.77	0.64	
Ashthma plant	Euphorbia hirta	2857	7.14	25.58	0.56	1875	6.25	15.12	0.48	
Shining cranesbill	Geranium lucidum	3571	7.14	30.66	0.70	2500	6.25	18.77	0.64	
Kharenti	Malvastrum coromandelianum	0	0.00	0.00	0.00	1875	6.25	15.12	0.48	
Gaajar ghaas	Parthenium hysterophorus	0	0.00	0.00	0.00	8750	25.00	43.09	0.14	
Yellow Foxtail	Setaria pumila	6429	21.43	39.99	0.14	0	0.00	0.00	0.00	
Synedrella grass	Synedrella nodiflora	0	0.00	0.00	0.00	3750	6.25	26.08	0.96	
Mamira	Thalictrum foliolosum	3571	14.29	26.96	0.18	625	6.25	7.82	0.16	
Tridex daisy	Tridex procumbens	0	0.00	0.00	0.00	2500	6.25	18.77	0.64	

Table 3. Phytosociological attributes of different species in Homegarden

Trees in Homegarden	Upper	Altitude 12	00-2000	m	Low	er altitude ·	tude <1200 m				
Common name	Botanical name	Density/ha	Frequency	IVI	A/F	Density/ha	Frequency	IVI	A/F		
Dhaura	Anogeissus latifolia	0	0.00	0.00	0.00	6	6.25	3.91	0.16		
Kathal	Artocarpus heterophyllus	0	0.00	0.00	0.00	6	6.25	6.70	0.16		
Kachnar	Bauhinia variegata	21	21.43	13.18	0.05	0	0.00	0.00	0.00		
Papeeta	Carica papaya	0	0.00	0.00	0.00	56	43.75	23.40	0.03		
Yellow Kaner	Cascabela thevetia	0	0.00	0.00	0.00	6	6.25	2.60	0.16		
Kharik	Celtis australis	43	35.71	36.78	0.03	13	12.50	6.35	0.08		
Orange	Citru aurantium	14	7.14	5.09	0.28	6	6.25	3.00	0.16		
Malta	Citru sinensis	107	57.14	48.20	0.03	38	25.00	14.04	0.06		
Nimbu	Citrus aurantiifolia	0	0.00	0.00	0.00	25	25.00	10.64	0.04		
Galgal	Citrus limon	14	14.29	7.80	0.07	6	6.25	2.63	0.16		
Chabutra	Citrus paradisi	0	0.00	0.00	0.00	25	18.75	11.20	0.07		
Bedu	Ficus palmata	14	7.14	5.62	0.28	0	0.00	0.00	0.00		
Timla	Ficus roxburghii	14	7.14	6.84	0.28	0	0.00	0.00	0.00		
Chanchri	Ficus subincisa	0	0.00	0.00	0.00	6	6.25	2.82	0.16		
Phalsa	Grewia asiatica	0	0.00	0.00	0.00	6	6.25	8.88	0.16		
Bhimal	Grewia optiva	57	28.57	28.31	0.07	13	12.50	6.86	0.08		
Akhrot	Juglans regia	7	7.14	7.78	0.14	6	6.25	9.69	0.16		
Subabool	Leucaena leucocephala	0	0.00	0.00	0.00	6	6.25	3.34	0.16		
Mango	Mangifera indica	43	28.57	25.33	0.05	69	43.75	37.65	0.04		
Dainkan	Melia azedarach	14	14.29	11.12	0.07	44	31.25	25.89	0.04		
Sehtoot	Morus alba	7	7.14	5.14	0.14	88	62.50	39.56	0.02		
Banana	Musa paradisiaca	57	28.57	28.76	0.07	56	31.25	26.40	0.06		
Aonla	Phyllanthus emblica	7	7.14	3.74	0.14	0	0.00	0.00	0.00		
Chulu	Prunus armeniaca	0	0.00	0.00	0.00	6	6.25	3.11	0.16		
Aadu	Prunus persica	43	35.71	23.60	0.03	13	12.50	6.04	0.08		
Guava	Psidium guajava	50	28.57	24.02	0.06	63	56.25	29.77	0.02		
Anar	Punica granatum	50	28.57	18.71	0.06	25	25.00	10.15	0.04		
Jamun	Syzygium cumini	0	0.00	0.00	0.00	6	6.25	5.41	0.16		
Crops in Homegarden		Upper	Altitude 12	00-2000	m	Low	∕er altitude ·	<1200 m			
Common name	Botanical name	Density/ha	Frequency	IVI	A/F	Density/ha	Frequency	IVI	A/F		
Bhindi	Abelmoschus esculentus	4286	14.29	20.77	0.21	1875	6.25	15.34	0.48		
Marcha	Amaranthus viridis	714	7.14	6.88	0.14	1875	6.25	15.34	0.48		
Patta Gobhi	Brassica oleracea var. capitata	714	7.14	6.88	0.14	0	0.00	0.00	0.00		
Mirch	Capsicum annum	30000	64.29	75.69	0.07	39375	87.50	99.93	0.05		
Arbi	Colocasia esculenta	18571	64.29	55.43	0.04	16250	68.75	55.76	0.03		
Kaddu	Cucurbita pepo	1429	14.29	10.26	0.07	0	0.00	0.00	0.00		
Haldi	Curcuma longa	0	0.00	0.00	0.00	9375	43.75	36.50	0.05		
Lauki	Lagenaria siceraria	714	7.14	6.88	0.14	625	6.25	6.74	0.16		

Trees in Homegarder	Uppe	r Altitude 12	00-2000	Lov	wer altitude ·	<1200 m	1200 m			
Common name	Botanical name	Density/ha	Frequency	IVI	A/F	Density/ha	Frequency	IVI	A/F	
Karela	Memordica charantia	714	7.14	6.88	0.14	625	6.25	6.74	0.16	
Mentha	Mentha spicata	0	0.00	0.00	0.00	2500	6.25	19.65	0.64	
Beans	Phaseolus vulgaris	2857	14.29	15.51	0.14	0	0.00	0.00	0.00	
Mooli	Raphanus sativus	714	7.14	6.88	0.14	0	0.00	0.00	0.00	
Tomato	Solanum lycopersicum	1429	14.29	10.26	0.07	0	0.00	0.00	0.00	
Baingan	Solanum melongena	5000	21.43	21.81	0.11	3125	12.50	17.62	0.20	
Makka	Zea mays	5714	21.43	23.86	0.12	1250	6.25	11.04	0.32	
Adrak	Zingiber officinale	8571	21.43	32.04	0.19	1875	6.25	15.34	0.48	
Herbs		Upper Altitude 1200-2000 m			Lower altitude <1200 m					
Billygoat weed	Ageratum conyzoides	14286	35.71	82.62	0.11	21875	56.25	91.71	0.07	
Kumarr	Bidens pilosa	13571	50.00	86.49	0.05	9375	37.50	51.57	0.07	
Kana	Commelina benghalensis	4286	14.29	36.42	0.21	5000	18.75	32.61	0.14	
Ashthma plant	Euphorbia hirta	0	0.00	0.00	0.00	3750	12.50	27.89	0.24	
Gallant soldier	Gallinsoga parviflora	4286	14.29	36.42	0.21	0	0.00	0.00	0.00	
Oxalis	Oxalis spp.	5714	7.14	58.06	1.12	13750	25.00	64.56	0.22	
Trifolium	Trifolium spp.	0	0.00	0.00	0.00	3125	6.25	31.66	0.80	

Table 3. Phytosociological attributes of different species in Homegarden

maximum A/F was in *C. sinensis* (0.03). *C. sinensis* in the northern aspect showed the highest IVI value (48.84). The concomitant results was also found in for fruit trees in that area (Bijalwan 2012). In lower altitude total tree density was 594 individuals/ha out of which *Morus alba* had highest density (87 individuals/ha), frequency (62.50) and IVI (39.56) and *Cascabela thevetia* showed lowest density (6 individuals/ha), frequency (6.25) and IVI (2.59). Abundance and frequency ratio was found maximum in *Juglans regia* (0.16) and minimum in *Psidium guajava* (0.01).

Among crops, total density was 81429 individuals/ha in upper altitude out of which Capsicum annum had maximum density (30000 individuals/ha), frequency (64.28) and IVI (75.68). Lagenaria siceraria showed minimum density (714 individuals/ha), frequency (7.14) and IVI (6.87). Maximum abundance and frequency ratio (0.21) was for Abelmoschus esculentus and minimum (0.04) of Colocasia esculenta. In lower altitude the total density of crops was 78750 individuals/ha, in which C. annum had maximum density (39375 individuals/ha), frequency (87.50) and IVI (99.93) and Memordica charantia had minimum density (625 individuals/ha), frequency (6.25) and IVI (6.74). Maximum abundance and frequency ratio (0.64) was of Mentha spicata and minimum (0.03) was for Colocasia esculenta (0.03). Findings of Vibhuti et al (2018) also depicted maximum frequency in C. annum (100) and minimum in C. esculenta (33.33).

Total density of herbs in upper altitudinal zone was 42143

individuals/ha in which Ageratum conyzoides had maximum (14285 individuals/ha) and Gallinsoga parviflora had minimum density (4285 individuals/ha). Bidens Pilosa had maximum (50) and Oxalis species had minimum (7.14) frequency. IVI was maximum (86.48) for Bidens pilosa and minimum (36.41) was of Gallinsoga parviflora. Abundance and frequency ratio was found maximum (1.12) for Oxalis species and minimum (0.05) was recorded for B. Pilosa (0.05). In lower altitudinal zone the total density of herbs was 56875 individuals/ha in which Ageratum conyzoides had maximum density (21875 individuals/ha) and frequency (56.25) and *Trifolium* species had minimum density (3125) and frequency (6.25). IVI was maximum (91.70) for Ageratum conyzoides and minimum for Euphorbia hirta (27.89). Abundance and frequency ratio was maximum (0.80) for Trifolium species and minimum (0.06) was of Bidens pilosa.

CONCLUSION

The present findings indicated that, there are relatively few trees in agricultural fields. It is perceived that homegardens provided a variety of ecological services since they are rich in tree species or tree diversity. Trees like *Grewia optiva, Celtis australis, Mallotus phillipensis, Citrus sinensis* and *Morus alba* are the most prominent tree species and suitable for restoration programme. Considering that traditional agroforestry systems provide a variety of economic and ecological benefits; it is crucial to preserve their sustainability.

REFERENCES

- Bagwari HK and Todaria NP 2011. Resource use pattern and agroecosystem functioning in Rawanganga micro watershed in Garhwal Himalaya, India. *Journal of Agriculture and Rural Development in the Tropics and Subtropics* **112**(2): 101-112.
- Bijalwan A 2012. Structure, composition and diversity of horticulture trees and agricultural crops productivity under traditional agrihorticulture system in mid hill situation of Garhwal Himalaya, India. *American Journal of Plant Sciences* **3**: 480-488.
- Bijalwan A 2013. Vegetation status of agroforestry systems in Tehri District of Garhwal Himalaya, India. Asian Journal of Science and Technology 4(12): 011-014.
- Bijalwan A, Upadhyay AP and Dobriyal MJR 2015. Tree crop combinations, biomass and carbon sequestration in conventional agrisilviculture (Agroforestry) system along altitude and aspects in the hills of Uttarakhand Himalaya, India. International Journal of Current Research in Bioscience and Plant Biology 2(6): 214-217.
- Curtis JT 1959. The Vegetation of Wisconsin: An ordination of plant communities. Madison, WI: University of Wisconsin Press.
- Curtis JT and Cottam G 1956. The use of distance measurement in phytosociological sampling. *Ecology* **37**:451-460.
- Curtis JT and McIntosh RP 1950. The interrelation of certain analytic and synthetic phytosociological characters. *Ecology* **31**: 434-455.
- FAO 2005. State of the world's Forest: Selected Current Issues in the Forest Sector. Realizing the economic Benefits of Agroforestry: Experiences, Lessons and Challenges. Part II. pp. 85-95.
- FSI 2019. State of Forest Report, Forest survey of India (Ministry of Environment & Forests), published by FSI, Dehradun 322 pp.
- Kanwal MS, Yadava AK and Vishvakarma SCR 2022. Crop productivity and soil properties under agroforestry system in Kosi Watershed of Kumaun Himalaya. *Indian Journal of Ecology* 49(1): 21-30
- Mahato S, Dasgupta S, Todaria NP and Singh VP 2016. Agroforestry mapping and characterization in four districts of Garhwal

Received 28 January, 2023; Accepted 15 May, 2023

Himalaya. Energy, Ecology and Environment 1(2): 86-97.

- Manzoor J and Jazib MJ 2020. Distribution pattern and phytosociological study of agroforestry trees in Poonch district of Jammu and Kashmir, India. *Journal of Biodiversity Conservation* and Bioresource Management **6**(2): 77-82.
- Phillips EC 1959. Methods of Vegetation study. New York: Holt R and Winston. 105p.
- Raturi GP 2012. Forest community structure along an altitudinal gradient of district Rudraprayag of Garhwal Himalaya, India. *Ecologia* **2**(3): 76-84.
- Sangeetha R, Murugan VB and Nandhini SU 2016. Economic analysis of factors affecting adoption rate of agroforestry technologies in Tamil Nadu. *Indian Journal of Ecology* 43(Special Issue-2): 785-788
- Thakur NS, Gupta NK and Gupta B 2004. Phytosociological analysis of woody and non-woody components under some agroforestry systems in Western Himalaya: A case study. *Indian Journal of Agroforestry* 6(1): 65-71.
- Thakur NS, Verma KS and Gupta NK. 2007. Structural difference visà-vis economic utility of shrubs and forage in different agroforestry systems in sub-tropical Himalayan region. *Journal* of Tree Sciences **26**(2): 35-48.
- Vibhuti, Bargali K, Bargali SS 2018. Effects of homegarden size on floristic composition and diversity along an altitudinal gradient in Central Himalaya, India. *Current Science* **114**(12): 2494-2503.
- Vikrant KK, Chauhan DS and Rizvi RH 2016. Existing agroforestry system and its component in Tehri district of Garhwal Himalaya. *Forestry Ideas* **22**(2-52): 221–227.
- Vikrant KK, Chauhan DS, Rizvi RH and Maurya A 2018. Mapping the extent of agroforestry area in different altitudes of Tehri District, North Western Himalaya, India through GIS and Remote Sensing Data. *Journal of the Indian Society of Remote Sensing* **46**(9): 1471–1480.
- Whitford PB 1949. Distribution of woodland plants in relation to succession and clonal growth. *Ecology* **30**(2): 199-208.