

Floristic Composition and Distribution of Plant Communities Under different Traditional Agroforestry Systems in Takoli Gad Watershed of Garhwal Himalayas

Jitendra Singh, D.S. Chauhan and Atul Negi

Department of Forestry and Natural Resources, HNB Garhwal University Srinagar Garhwal-246 174, India E-mail: singhjitu264@gmail.com

Abstract: The study was carried out in Lower (300-1200 masl) and Middle (1200-2000 masl) altitudinal ranges of the Takoli Gad Watershed of Garhwal Himalaya. Quadrats of 10×10 m, 5×5 m and 1×1 m were randomly laid out for trees, shrubs, crops and herbaceous plants in each system, respectively. Agri-silviculture, silvi-pasture, and homegardens were recognized as traditional Agroforestry systems. A total of 19 tree species, 10 agricultural crops and 6 herb species were recorded in Agri-silvicultural system, whereas 23 tree species, 15 agricultural crops which include cash crops and 6 herb species were recorded in home garden. In silvi-pastoral systems, 19 tree, 13 shrubs, 9 herb and 10 grass species were documented. Maximum diversity was in the home garden system owing to the inclusion of fruit trees and other multipurpose tree species. Agri-silviculture systems are generally utilized for food production, whereas home garden systems are mostly used for subsistence purposes and silvi-pasture systems are mostly used for fodder and fuelwood production. From the current study it can be conclude that the traditional agroforestry systems are important for the livelihood support of local people and biodiversity conservation to protect the depletion of natural resources.

Keywords: Traditional Agroforestry, Agri-silviculture, Home garden, Silvipasture, Phytosociology

Recent population development has put more strain on natural resources, such as land availability for maintaining lifestyles. Additionally, due to overuse and extraction of natural resources, ecosystems are becoming unstable and fragile (Sundrival and Sharma 1996). In this context, agroforestry plays an important role not only to sustain the natural balance but also providing livelihood securities to the local people. Agroforestry is commonly considered as 'a lowhanging fruit" due to its multifarious outputs such as tangible benefits (food, timber, fuelwood, fertilizer, NTFPs) and intangible (ecosystem services controlling soil erosion, water conservation, carbon sequestration, increasing climate resiliency, etc.) benefits, with the 6Fs, i.e. food, fruit, fodder, fuel, fertilizer, and fiber (Chavan et al 2015, 2016, 2022). Agroforestry has potential to enhance livelihoods in India, where people have a long history and have gathered local knowledge. India is notably noteworthy for its ethnoforestry practices and indigenous tree-growing knowledge systems. Shifting cultivation, taungya, and homegardens are three significant traditional systems that have changed through time (Sharma et al 2007, Newaj et al 2016). Several traditional Agroforestry practices from Himachal Pradesh and Uttarakhand, one of India's Himalayan regions, have been recorded (Arunachalam et al 2019, Thakur et al 2005, Thakur et al 2007). In Himachal, these practices include the

three most often used Agroforestry systems: Agri-silviculture, agri-horticulture, and gri-horti-silviculture (Singh and Dagar 1990). Similarly, in the Mussoorie hills of Western Himalayas identified an Agri- silviculture system, Agri-horticulture system, Agri-horti- silviculture system, Silvi-pastoral system and Homesteads.

The production potentials in Agroforestry systems can be accessed under particular site circumstances through phytosociological study. The top layer has a bigger influence on the structure of understory species. When there is no competition, a species reacts to external stimuli differently than when there is competition. The abandonment of conventional, regionally appropriate crop types and intercropping in favor of high-yielding monocultures may have an impact on the biodiversity of the agroecosystem (Chappell and LaValle 2011, Sunderland 2011). Guillerme et al (2011) observed that introduction of exotic fast-growing multipurpose trees and the conversion of agroforestry systems (including home gardens or their parts) to monocropping production systems has resulted in a decline in the diversity of native multipurpose trees and shrubs as well as herbaceous components like traditional vegetable crops and ornamental plants. Therefore, by preserving tree species in their natural habitat on farms, easing pressure on remnant forests, and providing optimal habitat for plant and

animal species on fields, traditional agroforestry methods promote biodiversity. Keeping the potential of traditional agroforestry in view, the present study was conducted with objective of to assess the biodiversity of traditional agroforestry systems.

MATERIAL AND METHODS

Study area: The current study was conducted in the 'Takoli Gad Watershed' of Uttarakhand's Tehri District. The digital elevation map of study area is shown in the Figure 1 (located between 30° 14' to 30° 23' N latitude and 78° 37' to 78° 46' E longitude). This watershed consists of 67 villages on an area of approximately 131.43 km². The region is in the Garhwal of the lesser Himalaya and is distinguished by gentle and mature landscape (Parmar et al 2012). Two altitudes *viz.* lower altitude (300-1200 m) and middle altitude (1200-2000 m) were taken for present study (Fig. 1). The soil of the study area is mostly acidic to neutral in nature with pH range from 6.4 to 7.3 (Parmar and Negi 2017).

Community analysis: Thorough reconnaissance field survey was carried out for identifying Traditional Agroforestry systems and species distribution. Different useful parameters viz village, altitudes, GPS locations, existing agroforestry systems, tree species, DBH, agricultural crops, grasses and weeds were recorded in each Agroforestry systems. Quadrats of 10×10m, 5×5m and 1×1m quadrats were laid out randomly for trees, shrubs, agricultural crops and herbaceous plants respectively in each system.

Quantitative analysis: The Important Value Index (IVI) which is an integrated measure of the relative frequency,

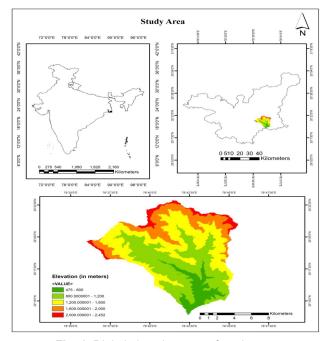


Fig. 1. Digital elevation map of study area

relative density and relative dominance/abundance was calculated for each species. The ratio of abundance to frequency indicates regular random (<0.050), contagious (0.050-1.00) and clump (>1.00) distribution patterns. The quantitative analyses for frequency, density, and abundance were done by following methodology developed by Curtis and MacIntosh (1950). Other parameters such as relative frequency, relative density, relative dominance was calculated by following Phillips (1959). The importance value index (IVI) at species level was calculated from the sum of relative frequency, relative density, and relative dominance (Curtis 1959). The ratio of abundance to frequency is generally used to interpret the distribution pattern of species (Whitford 1949). The ratio of abundance to frequency indicates regular distribution if below 0.025, random distribution between 0.025-0.05 and contagious if it is >0.05 (Curtis and Cottam 1956). The basal area of trees was calculated using the formula Basal area = $\pi d^2/4$ or $G^2/4\pi$ or πr^2 (Chaturvedi and Khanna1984).

RESULTS AND DISCUSSION

Among the different traditional agroforestry models, the three most common in the study area were agri-silviculture, silvi-pasture and homegardens. Bijalwan (2013) and Vikrant et al (2016, 2018) also reported agri-silviculture, agrihorticulture and agri-hortisilviculture in Tehri district of Garhwal Himalaya, Uttarakhand. Similarly, Kumari et al (2008) reported agri-horticulture, agri-silviculture, agri-silvipastoral, silvi-pastoral and horti-pastoral systems in the similar climatic conditions of Kinnaur district, Himachal Pradesh. A total of 19 tree species, 10 agricultural crops and 6 herb species were present in agri-silvicultural system whereas 23 tree species, 15 agricultural crops which include cash crops too and 6 herb species were recorded in aomegarden and 19 tree species, 13 species of shrubs, 9 herb species and 10 grass species were recorded in silvipastoral systems. Lower altitude shows more plant diversity than the middle altitude.

Agri-silvicultural system: In agri-silvicultural system, lower altitude has more biodiversity with 13 tree species, 5 herb species and 10 agricultural species than the middle altitude which has 12 trees, 4 herb and 6 agricultural species (Table 1). In both altitudes, the most abundant tree species were *G. optiva* and Celtis australis. Manzoor and Jazib (2020) also reported *G. optiva* as the most frequent tree species followed by *Pyrus persica* and *C. australis* in the agroforestry systems of Poonch District of Jammu & Kashmir. Farmers grow these species on the farm bunds because of their high fodder value. Middle altitude contains more density of trees, agricultural crops and herbs per hectare. Highest IVI for trees in middle and lower altitude was recorded for *G. optiva* in both lower

Trees	Botanical name	Lower altitude (300-1200 masl)				Middle altitude (1200-2000 masl)				
		Density (Plants/ha)	Total basal cover (cm²/ha)	IVI	A/F	Density (Plants/ha)	Total basal cover (cm²/ha)	IVI	A/F	
Trees										
Bhimal	Grewia optiva	191	41815.27	102.63	0.02	200	15652.00	87.25	0.03	
Kharik	Celtis australis	118	40240.00	75.17	0.03	78	8571.44	40.34	0.04	
Toon	Toona ciliata	36	17792.27	29.73	0.05	11	972.67	6.97	0.09	
Khaina	Ficus cunia	9	560.18	5.14	0.11	0	0	0	0	
Timla	Ficus roxburghii	9	765.91	5.30	0.11	33	6482.44	25.54	0.03	
Kachnar	Bauhinia variegata	18	2412.91	8.43	0.22	22	5381.22	18.40	0.05	
Subabool	Leucaena leucocephala	18	8077.45	15.66	0.06	0	0	0	0	
Khair	Acacia catechu	18	1729.91	10.75	0.06	0	0	0	0	
Sandhan	Ougeinia oojeinense	9	2541.09	6.67	0.11	22	1383.78	9.63	0.18	
Dainkan	Melia azaderach	27	6937.36	16.63	0.08	0	0	0	0	
Ruina	Mallotus phillipensis	18	3873.91	12.41	0.06	0	0	0	0	
Kathgular	Ficus hispida	9	1193.09	5.63	0.11	0	0	0	0	
Asan	Terminalia elliptica	9	1471.55	5.85	0.11	0	0	0	0	
Mulberry	Morus alba	0	0	0	0	33	6482.44	15.52	0.07	
Chanchari	Ficus subincisa	0	0	0	0	11	1680.33	7.89	0.09	
Panyan	Prunus cerasoides	0	0	0	0	33	5300.89	24.00	0.03	
Banj	Quercus leucotrichophora	0	0	0	0	33	5156.89	16.67	0.27	
Phalsa	Grewia asiatica	0	0	0	0	11	17819.89	28.90	0.09	
Jamun	Syzygium cumini	0	0	0	0	33	6863.89	18.89	0.27	
Herbs										
Kumarr	Bidens pilosa	5455	18.18	34.65	0.17	20000	55.56	75.87	0.06	
Tipatti	Oxalis spp.	13636	18.18	70.84	0.41	28889	33.33	98.98	0.26	
Billygoat weed	Ageratum conyzoides	28182	81.82	110.01	0.04	30000	66.67	99.25	0.07	
Kana	Commelina benghalensis	10909	36.36	53.87	0.08	0	0	0	0	
Asthma plant	Euphorbia hirta	4545	18.18	30.63	0.14	0	0	0	0	
Yellow foxtail	Setaria pumila	0	0	0	0	3333	11.11	25.90	0.27	
Agricultural cro	ps									
Toor	Cajanus cajan	2727	9.09	11.37	0.33	11111	22.22	31.17	0.23	
Chaulai	Amaranthus viridis	18182	45.45	45.17	0.09	23333	44.44	53.79	0.12	
Mandua	Eleusine coracana	39091	36.36	66.37	0.30	63333	44.44	100.30	0.32	
Himalayan Navrangi	Vigna umbellata	9091	18.18	24.27	0.28	17778	33.33	43.29	0.16	
Jhangora	Echinochloa esculenta	20000	9.09	51.72	2.42	20000	11.11	56.48	1.62	
Till	Sesamum indicum	7273	9.09	21.99	0.88	3333	11.11	14.97	0.27	
Gahat	Macrotyloma uniflorum	10909	18.18	27.12	0.33	0	0	0	0	
Arvi	Colocasia esculenta	3636	9.09	13.49	0.44	0	0	0	0	
Urad	Vigna mungo	10909	18.18	27.12	0.33	0	0	0	0	
Soyabean	Glycine max	2727	9.09	11.37	0.33	0	0	0	0	

Table 1. Phytosociological attributes of Agri-silviculture system

Trees	Botanical name	Low	/er altitude (30	0-1200 ma	ısl)	Middl	e altitude (12	altitude (1200-2000 masl)		
		Density (Plants/ha)	Total basal cover (cm²/ha)	IVI	A/F	Density (Plants/ha)	Total basal cover (cm²/ha)	IVI	A/F	
Plants										
Kharik	Celtis australis	36	8464.09	24.42	0.03	89	15110.22	45.17	0.03	
Banj	Quercus leucotrichophora	9	2033.36	6.03	0.11	100	23912.00	57.07	0.03	
Timla	Ficus roxburghii	36	4854.45	18.57	0.05	89	11227.78	40.71	0.03	
Bhimal	Grewia oppositifolia	36	2995.64	19.25	0.03	67	11750.89	35.03	0.03	
Toon	Toona ciliata	45	22467.18	39.31	0.03	22	4018.11	10.89	0.18	
Kachnar	Bauhinia variegata	36	6706.82	17.88	0.11	0	0.00	0.00	0.00	
Harad	Terminalia chebula	27	8351.82	17.77	0.08	56	4924.22	19.99	0.11	
Aonla	Phyllantus emblica	9	339.73	4.43	0.11	22	879.22	9.99	0.05	
Sandhan	Ougeinia oojeinense	55	4215.91	21.30	0.07	33	2200.11	13.29	0.07	
Khair	Syzygium cumini	55	8557.64	25.40	0.07	0	0.00	0.00	0.00	
Amaltas	Cassia fistula	18	1962.64	10.07	0.06	0	0.00	0.00	0.00	
Haldu	Haldina cordifolia	45	10706.36	25.76	0.06	0	0.00	0.00	0.00	
Ruina	Mallotus phillipensis	64	7212.91	28.24	0.05	11	1347.67	6.04	0.09	
Kanndi	Bauhinia retusa	36	8011.27	21.55	0.05	0	0.00	0.00	0.00	
Khaina	Ficus cunia	36	8987.55	20.03	0.11	22	1112.22	7.55	0.18	
Chanchari	Ficus subincisa	0	0	0	0	22	858.00	9.96	0.05	
Khinna	Falconeria insignis	0	0	0	0	44	6403.22	25.31	0.02	
Panyan	Prunus cerasoides	0	0	0	0	22	2091.22	11.38	0.05	
Jamun	Syzygium cumini	0	0	0	0	22	1160.44	7.61	0.18	
Shrubs										
Hisalu	Rubus ellipticus	73	9.09	14.94	0.22	356	33.33	40.58	0.08	
Kingora	Berberis aristata	218	27.27	27.58	0.07	222	22.22	29.23	0.11	
Lantana	Lantana camara	255	27.27	30.50	0.09	178	11.11	27.91	0.36	
Tungla	Rhus parviflora	255	27.27	30.50	0.09	400	44.44	46.06	0.05	
Sakina	Indigofera tinctoria	73	9.09	14.94	0.22	133	11.11	22.25	0.27	
Dhaud	Woodfordia fruticosa	400	45.45	42.57	0.05	89	11.11	16.59	0.18	
Kari patta	Murraya koenigii	509	54.55	50.95	0.04	89	11.11	16.59	0.18	
Khakshu	Boehmeria macrophylla	327	27.27	36.36	0.11	0	0	0	0	
Kharanu	Carissa spinarum	218	27.27	27.58	0.07	0	0	0	0	
Mimosa bush	Vachellia farnesiana	73	9.09	14.94	0.22	0	0	0	0	
Ber	Ziziphus jujuba	36	9.09	9.14	0.11	0	0	0	0	
Kala bansa	Eupatorium adenophorum	0	0	0	0	800	55.56	72.88	0.06	
Ameda	Rumex hastatus	0	0	0	0	178	11.11	27.91	0.36	
Herbs										
Kumarr	Bidens pilosa	14545	66.67	74.29	0.07	16667	44.44	89.35	0.08	
Mamira	Thalictrum foliolosum	909	33.33	46.08	0.16	5556	22.22	41.51	0.11	
Billygoat weed	Ageratum conyzoides	4545	11.11	23.13	0.45	5556	11.11	45.53	0.45	

Table 2. Phytosociological attribute of Silvi-pasture system

Cont...

Herbs	Botanical name	Lo	ower altitude (300	-1200 mas	i)	Middl	dle altitude (1200-2000 masl)			
		Density (plants/ha)	Frequency (%)	IVI	A/F	Density (plants/ha)	Frequency (%)	IVI	A/F	
Herbs										
Lechkumar	Cynoglossum lanceolatum	7273	44.44	58.07	0.12	5556	22.22	41.51	0.11	
Ashthma plant	Euphorbia hirta	2727	22.22	29.03	0.18	7778	22.22	51.45	0.16	
Gaajar ghaas	Parthenium hysterophorus	9091	11.11	23.13	0.45	0	0	0	0	
Kaliko plant	Euphorbia heterophylla	3636	11.11	30.28	0.63	0	0	0	0	
Tridex daisy	Tridex procumbens	7273	11.11	15.98	0.27	0	0	0	0	
Kunja	Artemisia vulgaris	0	0	0	0	3333	11.11	30.65	0.27	
Grasses										
Tachlu	Apluda mutica	8182	18.18	28.40	0.25	32222	66.67	74.29	0.07	
Birachu	Pennisetum species	8182	18.18	28.40	0.25	17778	33.33	46.08	0.16	
Dhaddu	Arundinella nepalensis	18182	36.36	47.74	0.14	24444	44.44	58.07	0.12	
Gurla	Crysopogon montanus	44545	72.73	92.89	0.08	8889	22.22	29.03	0.18	
False brome	Brachypodium sylvaticum	9091	27.27	30.29	0.12	5556	11.11	23.13	0.45	
Black speargrass	Heteropogon contortus	2727	9.09	14.92	0.33	7778	11.11	30.28	0.63	
Yellow bluestem	Bothriochloa ischarmum	2727	9.09	14.92	0.33	3333	11.11	15.98	0.27	
Finger grass	Digitaria spp.	3636	9.09	18.50	0.44	0	0	0	0	
Naaru		6364	18.18	23.94	0.19	0	0	0	0	
Nut grass	Cyprus rotundus	0	0	0	0	5556	11.11	23.13	0.45	

Table 2. Phytosociological attribute of Silvi-pasture system

(102.63) and middle altitude (87.25) followed by *C. australis* (75.17 in lower and 40.34 in middle altitude). While lowest IVI was recorded for *Ficus cunia* (5.14) in lower and *Toona ciliata* (6.97) in middle altitude. Among the herb species, highest IVI was recorded for *Ageratum conyzoides* in lower altitude (110.01) as well as in middle altitude (99.25) while the minimum IVI was recorded for *Euphorbia hirta* (30.63) in lower altitude and *Setaria pumila* (25.90) in middle altitude. Maximum IVI for agricultural crop was recorded for *Eleusine coracana i.e.* 66.37 for lower altitude and 100.30 for middle altitude. While minimum IVI value was recorded for *Glycine max* (11.37) in lower altitude and *Sesamum indicum* (14.97) in middle altitude.

Silvi-pasture system: A total of 15 tree, 11 shrub, 8 herb and 9 grass species were recorded in lower altitude and 14 tree, 9 shrub, 6 herbs and 8 grass species were found in middle altitude in silvi-pasture system (Table 2). In tree layer, highest IVI was recorded for *Toona ciliata* (39.31) in lower altitude and for *Quercus leucotrichophora* (57.07) in middle altitude while the lowest IVI was recorded for *Phyllanthus emblica* (4.43) in lower altitude and for *Mallotus phillipensis* (6.04) in middle altitude. In shrub layer, *Murraya koenigii* (54.55) showed highest IVI value in lower altitude and *Eupatorium*

adenophorum (72.88) showed highest IVI in middle altitude. Among the herb layer, highest IVI value was recorded for *Bidens pilosa* in both altitudes *i.e.* 74.29 in lower and 89.35 in middle altitude while the minimum IVI was recorded for *Tridex procumbens* (15.98) in lower altitude and for *Artemisia vulgaris* (30.65) in middle altitude. Among grasses maximum IVI was recorded for *Crysopogon montanus* (92.89) in lower altitude and for *Apluda mutica* (74.29) in middle altitude while the least (14.92) was recorded for *Heteropogon contortus* and *Bothriochloa ischarmum* simultaneously in lower altitude and 15.98 for *Bothriochloa ischarmum* in middle altitude. Dominance of *Murraya koenigii* in shrubs and *Crysopogon montanus* in herbs was also documented by Thakur et al (2004, 2005) in the silvi-pastoral system of Western Himalayas.

Home garden: Home garden consists of higher biodiversity than other agroforestry systems. It is due to the presence of fruit (horticultural) trees and multipurpose trees. Home garden is the system used to meet the subsistent requirements of the households in study area. As Linger (2014) suggested that the home gardens, ecologically sustainable and diversifies sustainability of local community and therefore, considered as exceptional tools for

Trees	Botanical name	Lowe	er altitude (300)-1200 ma	sl)	Middle	altitude (1200-2000 masl)		
		Density (Plants/ha)	Total basal cover (cm²/ha)	IVI	A/F	Density (Plants/ha)	Total basal cover (cm²/ha)	IVI	A/F
Tree									
Mango	Mangifera indica	118	18800.00	59.99	0.02	56	3622.33	25.60	0.05
Malta	Citrus sinensis	55	2819.18	20.33	0.04	156	12110.56	71.08	0.02
Mulberry	Morus alba	36	2563.45	16.94	0.03	22	1131.78	12.13	0.04
Guava	Psidium guajava	73	6770.27	33.94	0.02	89	6755.11	40.30	0.04
Kagzi Nimbu	Citrus aurantiifolia	9	771.91	4.39	0.11	0	0.00	0	0
Bhimal	Grewia optiva	9	1868.27	5.72	0.11	67	6888.89	33.73	0.06
Banana	Musa paradisica	55	7596.27	26.09	0.04	100	12974.89	50.99	0.09
Peach	Prunus persica	9	505.91	4.07	0.11	33	2358.22	19.46	0.03
⊃apaya	Carica papaya	73	5998.27	31.08	0.02	11	527.89	5.99	0.09
Phalsa	Grewia asiatica	9	7491.45	12.50	0.11	0	0.00	0	0
Chanchari	Ficus subincisa	9	498.73	4.06	0.11	0	0.00	0	0
Chulu	Prunus armeniaca	9	835.45	4.47	0.11	11	219.78	5.40	0.09
Anaar	Punica granatum	18	414.55	7.42	0.06	0	0.00	0	0
Kathal	Artocarpus heterophyllus	9	4981.27	9.47	0.11	0	0.00	0	0
Dainkan	Melia azaderach	27	8951.00	19.26	0.08	22	3069.67	15.86	0.04
Chabutra	Citrus paradisi	27	1984.91	10.86	0.08	11	896.78	6.70	0.09
Dhaura	Anogeissus latifolia	9	1756.82	5.58	0.11	0	0.00	0	0
Akhrot	Juglans regia	9	4346.82	8.71	0.11	0	0.00	0	0
Pear	Pyrus communis	9	1931.09	5.79	0.11	0	0.00	0	0
Nimbu	Citrus limon	9	1090.18	4.78	0.11	0	0.00	0	0
Apple	Mallus domestica	9	892.00	4.54	0.11	0	0.00	0	0
Kharik	Celtis australis	0	0	0	0	11	1208.33	7.30	0.09
Varangi	Citrus aurantium	0	0	0	0	11	249.67	5.46	0.09
lerbs									
Kumarr	Bidens pilosa	9091	27.27	49.85	0.12	10000	33.33	75.59	0.09
Tipatti	Oxalis spp.	8182	18.18	49.13	0.25	12222	22.22	83.52	0.25
Billygoat weed	Ageratum conyzoides	20909	63.64	91.96	0.05	7778	22.22	61.23	0.16
Gallant soldier	Galinsoga parviflora	1818	9.09	19.14	0.22	4444	11.11	43.93	0.36
Kana	Commelina benghalensis	10000	36.36	53.66	0.08	3333	11.11	35.72	0.27
Asthma plant	Euphorbia hirta	5455	18.18	36.26	0.17	0	0	0	0
gricultural crop	os								
/lirch	Capsicum annuum	39091	81.82	92.91	0.06	32222	77.78	72.81	0.05
Baingan	Solanum melongena	1818	9.09	13.04	0.22	7778	33.33	26.77	0.07
auki	Lagenaria siceraria	909	9.09	8.08	0.11	1111	11.11	8.14	0.09
<i>l</i> aize	Zea mays	4545	18.18	21.33	0.14	4444	22.22	18.63	0.09
Vaize	Zea mays	4545	18.18	21.33	0.14	4444	22.22	18.63	0.09
Adrak	Zingiber officinale	5455	18.18	24.35	0.17	13333	33.33	38.51	0.12

 Table 3. Phytosociological attributes of homegarden

Cont...

Trees	Botanical name	Lowe	er altitude (300)-1200 ma	sl)	Middle	e altitude (120	00-2000 m	iasl)
		Density (Plants/ha)	Total basal cover (cm²/ha)	IVI	A/F	Density (Plants/ha)	Total basal cover (cm²/ha)	IVI	A/F
Arvi	Colocasia esculenta	14545	63.64	47.95	0.04	16667	66.67	47.12	0.04
Haldi	Curcuma longa	10000	45.45	35.99	0.05	5556	22.22	21.56	0.11
Karela	Memordica charantia	909	9.09	8.08	0.11	0	0	0	0
Tomato	Solanum lycopersicum	1818	18.18	12.28	0.06	0	0	0	0
Bhindi	Abelmoschus esculentus	2727	9.09	18.00	0.33	0	0	0	0
Sugarcane	Saccharum officinarum	2727	9.09	18.00	0.33	0	0	0	0
Beans	Phaseolus vulgaris	0	0	0	0	4444	22.22	18.63	0.09
Rai	Brassica juncea	0	0	0	0	2222	11.11	12.82	0.18
Reddish	Raphanus sativus	0	0	0	0	1111	11.11	8.14	0.09
Pudina	Mentha spicata	0	0	0	0	5556	11.11	26.89	0.45

Table 3. Phytosociological attributes of homegarden

biodiversity conservation. Lower altitude reported 21 trees, 6 herb and 11 agricultural species, whereas middle altitude recorded 13 trees, 5 herb, and 11 agricultural species (Table 3). Plant density was higher at the middle altitudes of the tree layer and agricultural crop layer. The highest IVI value was recorded for Mangifera indica (59.99) in lower altitude and for Citrus sinensis (71.08) in middle altitude. While the minimum value of IVI was found for Prunus persica (4.07) in lower altitude and for P. armeniaca (5.40) in middle altitude. A. conyzoides (91.96) in lower altitude and Oxalis spp. (83.52) in middle altitude had the highest IVI values in the herb layer. Minimum IVI value for herbs was recorded for Galinsoga parviflora (19.14) in lower altitude and Commelina benghalensis (35.72) in middle altitude. Capsicum annuum was the most prominent agricultural crop in both altitudes, with an IVI value of 92.91 in lower altitude and 72.81 in middle altitude.

CONCLUSION

Traditional agroforestry systems found in the study area support a diverse range of vegetation. People manage these systems based on their requirements. The home garden supports maximum tree density. Trees are cultivated on agricultural bunds in agri-silviculture systems, whereas in homegardens, they are grown during the farm. However, the density of herbs in the home garden is lower due to constant weeding by households. Agri-silviculture systems showed higher density of agricultural crops than homegardens owing to difference in structural compositions. Silvi-pasture system includes trees and grasses with high fodder value. The system, altitudinal gradient and climatic conditions influence the kind of species and their distribution. The current study reveals that traditional Agroforestry systems are essential not just for meeting people's basic needs for livelihood support, but also for conserving the area's biodiversity.

REFERENCES

- Arunachalam A, Chavan SB, Handa AK, Kumar A, Bhaskar S, Alagusundaram K and Mohapatra T 2019. Agroforestry Systems for the Indian Himalayan Region. *Indian Council of Agricultural Research, New Delhi;* pp 19.
- Bijalwan A 2013. Vegetation status of agroforestry systems in Tehri District of Garhwal Himalaya, India. *Asian Journal of Science and Technology* **4**(12):011-014.
- Chappell MJ and LaValle LA 2011. Food security and biodiversity: Can we have both? An agroecological analysis. *Agriculture and Human Values* **28**(1): 3-26.
- Chaturvedi MD and Khanna LS 1984. Forest Mensuration. International Book Distributers, Dehradun. Pp.86-94.
- Chavan SB, Dhillon RS, Ajit; Rizvi RH, Sirohi C, Handa AK, Bharadwaj KK, Johar V, Kumar T, Singh P, Daneva V and Kumari S 2022. Estimating biomass production and carbon sequestration of poplar-based agroforestry systems in India. *Environment, Development and Sustainability* 24: 13493-13521.
- Chavan SB, Keerthika A, Dhyani SK, Handa AK, Newaj R and Rajarajan K 2015. National Agroforestry Policy in India: a low hanging fruit. *Current Science* **25**: 1826-1834.
- Chavan SB, Uthappa AR, Sridhar KB, Keerthika A, Handa AK, Newaj R, Kumar N, Kumar D, Chaturvedi OP 2016. Trees for life: Creating sustainable livelihood in Bundelkhand region of central India. *Current Science* 25: 994-1002.
- Curtis JT 1959. The Vegetation of Wisconsin: An Ordination of Plant Communities. Madison, *WI: University of Wisconsin Press.*
- Curtis JT and Cottam G 1956. The use of distance measurement in phytosociological sampling. *Ecology* **37**: 451-460.
- Curtis JT and McIntosh RP 1950. The interrelation of certain analytic and synthetic phytosociological characters. *Ecology* **31**: 434-455.
- Guillerme S, Kumar BM, Menon A, Hinnewinkel C, Maire E and Santhoshkumar AV 2011. Impacts of public policies and farmer preferences on Agroforestry practices in Kerala India. *Environmental Management* 48(2): 351-364.
- Kumari A, Sehgal R and Kumar S 2008. Traditional Agroforestry Systems Practiced in Lahaul (Lahaul & Spiti) and Kinnaur Districts of Himachal Pradesh. *Indian Forester* 1003-1010.

- Linger E 2014. Agro-ecosystem and socio-economic role of home garden Agroforestry in Jabithenan District, North-Western Ethiopia: Implication for climate change adaptation. *Springer Plus* **3**: 1-9.
- Manzoor J and Jazib MJ 2020. Distribution pattern and phytosociological study of agroforestry trees in Poonch District of Jammu and Kashmir, India. *Journal of Biodiversity Conservation and Bioresource Management* **6**(2):77-81.
- Newaj R, Chavan SB, Kumar D, Uthappa AR, Singh M and Sridhar KB 2016. Agroforestry research in India: Relevance in livelihood and climate change. *Agroforestry Research Development* (Editors: JC Dagar and JC Tiwari) Nova Science Publisher, New York.
- Parmar MK and Negi RS 2017. Physico chemical analysis of soil: A case study of Takoli Gad Watershed, Garhwal Himalaya. International Journal of Applied and Pure Science and Agriculture 3(7): e-ISSN: 2394-5532, p-ISSN: 2394-823X.
- Parmar. MK, Negi RS and Purohit K 2012. Implications of GIS application for the sustainable watershed development in Garhwal Himalaya: A case study of Takoli Gad Watershed, District Tehri Garhwal, Uttarakhand. *International Journal of Basic and Applied Sciences* 1(3):227-234.
- Phillips EC 1959. Methods of Vegetation study. New York: Holt R and Winston. 105 p.
- Sharma, R, Xu J and Sharma G 2007. Traditional Agroforestry in the eastern Himalayan region: Land management system supporting ecosystem services. *Tropical Ecology* **48**: 1-12.

Singh VP and Dagar JC 1990. Agroforestry systems for Mussoorie

Received 10 March, 2023; Accepted 30 July, 2023

Hills in Western Himalayas. Indian Forester 115(7) 610-614.

- Sunderland TCH 2011. Food security: Why is biodiversity important? International Forestry Review **13**(3): 265-274.
- Sundriyal RC and Sharma E 1996. Anthropogenic pressure on tree structure and biomass in the temperate forest of Mamlay Watershed in Sikkim. *Forest Ecology and Management* 81: 1-3.
- Thakur NS, Gupta NK and Gupta B 2004. Phytosociological analysis of woody and non-woody components under some agroforestry systems in Western Himalaya: A case study. *Indian Journal of Agroforestry* 6(1): 65-71.
- Thakur NS, Gupta NK and Gupta B 2005. An appraisal of biological diversity in agroforestry systems in North-Western Himalaya. *Indian Journal of Ecology* 32(1):7-12.
- Thakur NS, Verma KS and Gupta NK 2007. Structural difference visà-vis economic utility of shrubs and forage in different agroforestry systems in sub-tropical Himalayan region. *Journal* of Tree Sciences 26(2): 35-48.
- Vikrant KK, Chauhan DS and Rizvi RH 2016. Existing agroforestry system and its component in Tehri District of Garhwal Himalaya. *Forestry Ideas* **2**(52): 221-227.
- Vikrant KK, Chauhan DS, Rizvi RH and Maurya A 2018. Mapping the extend of agroforestry area in different altitudes of Tehri district, North Western Himalaya, India through GIS and remote sensing. *Journal of the Indian Society of Remote Sensing* **46**(9): 1471-1480.
- Whitford PB 1949. Distribution of woodland plants in relation to succession and clonal growth. *Ecology* **30**(2): 199-208.