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Abstract: The study was conducted to select the significant environmental covariates for mapping the soil through the computer-assisted soil 
mapping method. A total of 340 soil profile information was intersected against the environmental covariates to reduce the dimension of the 
data by which the quality of the spatial soil predictions can be improved. Robust PCA is known for its supremacy in handling image drive data as 
it can even process the data extracted from raster image series, which are high in outliers. The selection of significant covariates for digital soil 
mapping was done through robust Principal Component Analysis (PCA) and conventional PCA. The scree plot indicates that four principal 
components are to be considered from both methods. The selected principal components of robust PCA cumulatively contribute 63.17% of the 
total information to the original dataset, whereas conventional PCA contributes 52.46% only. Contribution charts were employed for extracting 
the significant environmental covariates in which 26 out of 33 covariates are obtained from the selected principal components of robust PCA. 
Soil mapping would be efficient if the covariates are selected through this process and employed for the mapping process. 
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Soil is a life support component that is vital to the Earth's 

ecosystem. All living organisms depend on soil directly or 

indirectly, where plants are predominant. Therefore, 

information regarding its nature, types, properties, spatial 

distribution, and extent is important for efficiently utilizing and 

managing (Afshar et al 2018) the resources. Over a decade, 

the distribution, pattern, and type of soil vary due to biotic and 

abiotic factors from place to place and time to time. Hence, it 

is necessary to identify and classify the soil forms in different 

areas. Mapping of soils helps to locate and classify the 

existing soil types (Semy and Singh, 2021). In addition, it 

collects information regarding their location, nature, and 

properties. Generally, traditional soil mapping is done based 

on the information gathered from soil samples at regular 

intervals throughout the landscape. The maps are primarily in 

hard copy and are gradually converted to digital form after the 

Geographical Information System (GIS) advent. But they are  

time-consuming, expensive laborious, and untrustworthy in , 

producing spatial variability of soil maps (Abdel-Kader et al 

2011). The possibility of human error is high and unavoidable 

in conventional cases.

Digital soil mapping (DSM) is a predictive soil mapping that 

collects the geographically referenced soil databases created 

on quantitative relationships between spatially related 

environmental data (Kumaraperumal et al 2022). It is a 

quantitative technique of surveying, mapping, and analyzing 

the associations between soil properties and environmental 

variables (Polisgowdar et al 2022, Wani et al 2022). It involves 

the generation of initial soil survey maps, refining, or updating 

the soil survey information, making specific soil 

interpretations, and measuring the risk (Zhang et al 2017). 

DSM is employed using the soil profile information as 

dependent and environmental covariates as independent 

variables. These data are collected once in a particular period, 

and the soil maps are predicted for the future using probability 

statistics or artificial intelligence methods. The choice of the 

independent variable for effective mapping remains a 

challenging one. Out of available covariates, effective 

mapping can be generated only if the significant covariates 

are identified and used in the mapping process. 

Environmental covariates are available in shape files and 

were converted into a raster format for mapping purposes in 

which the outliers are common. The common cause of outliers 

is faulty pixels like noise, occlusion, or alignment errors. It 

makes the conventional principal component analysis fail. So, 

robustness is the better option for handling these outlier 

datasets which paved the path for using robust principal 

component analysis in selecting the significant variable. 

These powerful dimensionality reduction techniques handle 

the outlier efficiently and analyze image data in a better way.



The modern glitches of estimation, optimization, image 

recognition, and signal processing are part of analyzing huge 

dimensional data. In computer vision applications, outliers 

naturally occur within a sample image which demands the 

need for structuring low-dimension approximations for the 

large-scale dataset. This versatile technique can be used 

even when the assumptions are violated which readily deals 

with pixels, raster images, facial recognition, image 

compression, and remote sensing data, etc. (Pinto da Costa 

and Cabral 2022). Robust PCA is insensitive to outliers and 

produces the same result as the conventional method 

without outliers (Sapra 2010). However, they leave the 

residuals associated with the outlier and help in identifying 

the influential points. So, the study attempts to use robust 

principal component analysis to discover the significant 

covariates. This study gives insight in selecting the important 

environmental covariates that DSM can use for future 

purposes.

MATERIAL AND METHODS

Study area: The Coimbatore district is located in the western 

Agro-climatic Zone of Southern India which is 411 meters 

above the mean sea level and geographically extended from 

11°24'23" to 10°13'12" N latitude and 76°39'20" to 77°18'00" 

E longitude covering an area of about 4721.28 sq. km. The 

average annual rainfall is about 642.2mm with the mean 

maximum and minimum temperatures of the district being 

32.7°C and 21.5°C, respectively. Sugarcane, cotton, 

turmeric, and oilseeds were the different crops cultivated in 

the study area. The area map and the corresponding soil 

profile sites, along with their elevation and physiographical 

information are given in Figure 1.

Data: The soil class information containing 340 soil profile 

samples i.e., a  subgroup was collected with the help of the 

Department of Remote Sensing and GIS and the  

Department of Soil Science and Agricultural Chemistry, 

TNAU, Coimbatore in 2022. Further, thirty-three different 

environmental covariates (Table 1) depicting the Climate, 

Organisms, Relief, and Parent were developed from the 

DEM (Digital Elevation Model) and other remote sensing 

variables. The continuous spatial information on the climatic 

parameters was downloaded from WorldClim 2.1 including 

the temporal range of 1970-2000 interval at 30 arc seconds. 

The qualitative nature of the Agro-Climatic, Agro-Ecological 

zones, and the Western Ghats were rasterized to enable 

stacking with other covariates. Satellite data products 

(Landsat 8) along with their transformed NDVI images were 

utilized to impart the influence of the organisms on soil 

formation (NRSC 2012). The cloud-free Landsat 8 data 

product was downloaded from USGS earth explorer during 

Covariate Parameter Scale

Climate Maximum annual temperature ⁰C / 30 seconds

Minimum annual temperature ⁰C / 30 seconds

Mean annual rainfall mm/ 30 seconds

Agro-Climatic Zone 30m

Agro-Ecological Zone 30m

Organisms Land Use & land cover map 1:50,000 scale

Landsat 8 – Band 2 (Blue) 30m

Landsat 8 – Band 3 (Green) 30m

Landsat 8 – Band 4 (Red) 30m

Landsat 8 – Band 5 (NIR) 30m

Relief Elevation (SRTM DEM) 30m

Hill shading 30m

Aspect 30m

Convergence index 30m

General curvature 30m

Longitudinal curvature 30m

Slope length steepness (LS) factor 30m

Maximum curvature 30m

Mid slope position 30m

Minimum curvature 30m

Plan curvature 30m

Profile curvature 30m

Slope gradient 30m

Tangential curvature 30m

Terrain ruggedness index 30m

Topographic wetness index 30m

Total catchment area 30m

Total curvature 30m

Valley depth 30m

Western ghats 30m

Physiography 1:50,000 scale

Parent 
material

Geomorphology 1:50,000 scale

Rock outcrop difference ratio 1:50,000 scale

Table 1. Parameters of environmental covariates 

March to May period to enhance the delineation of the soil 

attributes.

The relief parameters were primarily derived from Shuttle 

Radar Topography Mission (SRTM) DEM product by utilizing 

the hydro geomorphometric indexes of the SAGA GIS 

software. Existing soil information on the Geology, 

Geomorphology, and Land use and Land cover products 

obtained from the National Remote Sensing Centre (NRSC) 

at 1:50,000 map interval was rasterized (NRSC, 2016) using 

the raster tool feature available in ArcGIS 10.6 software and 

were implemented as covariates. The rasterized covariates 

2017Selection of Significant Raster Images for Digital Soil Mapping



Fig. 1  . Study area map

are then resampled and reprojected to the common 

projection system. The covariate parameters are then 

stacked and intersected with the soil profile information in the 

R spatial environment. The extracted data is subjected to 

data reduction techniques from which the significant 

environmental parameters are sorted.  

Variable screening: Dimensionality reduction techniques 

are the multivariate approaches used when the variables are 

highly correlated or when the number of variables is more 

than the number of observations. It is also used to identify the 

variable which significantly contributes to the results. Data 

processing with a low dimensional significant variable makes 

the analysis easier and more effective (Gowsar et al 2019). 

Principal component analysis: Principal Component 

Analysis (PCA) is one of the dimensionality reduction 

techniques used to reduce the dimension of the datasets by 

removing the nsignificant variables without any information 

loss and for forming predictive models (Dinesh et al 2022). It 

helps in screening the significant environmental covariates, 

thus reducing the dimension of original variables and 

extracting a small number of latent factors, Principal i.e., 

Components (PC). Principal components are a linear 

combination of  random variables explaining the variation p

produced by original data. The linear combination the of  p

variable is given by,

PCv = ev Y + ev Y …+ ev Y                             (1)1 1 2 2 + p p

PCA computes the covariance matrix or correlation matrix 

for the given datasets, followed by calculating the 

eigenvectors and the eigenvalues for the covariance matrix. 

det ( I - A) = 0 and ( I - A) v = 0I                      (2)λ λ
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Where  is an eigenvalue, is an eigenvector, is a λ v A 

square matrix, and is the determinant of the matrix. det 

However, the conventional PCA technique is not 

recommended for the study data, as they are susceptible to 

outliers and poorly handle the data extracted from raster 

images (Jolliffe and Cadima 2016). 

Robust principal component analysis: Outliers are the 

observations that fluctuate significantly from actual 

observations. Outliers in data affect the conventional PCA 

analysis in terms of the correlation matrix, covariance 

estimations, and proportions of the total variance (Zahariah 

and Midi 2022). To overcome these problems, robust 

principal component analysis is replaced in place of the 

conventional method. Robust PCA helps reduce the 

dimensionality problem of explanatory variables and deals 

with multi-collinearity like the traditional way, but all these in 

the presence of outliers in data (Lu et al 2023). It recovers the 

low-rank matrix and principal components with high 

probability, avoiding the choice of the tuning parameter. 

Rousseeuw used the Minimum covariance determinant 

(MCD) method in robust principal component analysis 

(Kalina and Tichavský 2022). It reduces the number of 

iterations and analysis time for limited to low-dimensional 

data. It uses the intra-sample outlier process to account for 

pixel outliers. The Minimum Covariance Determinant (MCD) 

is also referred to as modified robust PCA. It is one of the 

popular and fastest methods in showing a high degree of 

robustness against outliers. In robust PCA, the location and 

scale parameters of conventional PCA are replaced and 

produced with high breakdown using MCD (Piccini et al 

2019). Parameters  and  are replaced with robust μ Σ

estimates  (median) and  (MAD - Median Absolute μ Σ

Deviation) for calculating scale and location parameters. 

Initially, the data is split into groups, parameters are found 

using the MCD method, and finally, they are joined, which is 

the main modification in this procedure.

Let represent the dimension of sub-clusters datasets h 

containing n observations. The -value determines the h

robustness of the estimator, and a minimum [((n + p + 1)) / 2] 

value should be taken as a lower bound. The MCD estimator 

attempts to find the minimum covariance determinant of the 

optimal h-subset containing these sub-clusters, and the 

distance between them is calculated by

The mean of the optimal h-subset gives the estimate of 

location parameter MCD asμ

The covariance matrix provides the estimate of scale 

parameter MCD asΣ

The breakdown point value of the MCD estimator is (n – h 

+ 1)/n. Weighted estimators (Bulut and Zaman 2022) will be 

used to increase the estimator's efficiency.

RESULTS AND DISCUSSION

The respective profile information of each covariate, 

concerning the sample points is extracted using ArcGIS 

software. The data values obtained from stacked 

environmental covariates are used for the study. Even 

though all the parameters are expected to contribute some 

information to the map generation process, sorting out the 

important parameters with appropriate data reduction 

techniques is necessary (Samuel-Rosa et al 2015). Soil 

maps of the study area generated from the significant 

environmental covariates are highly efficient and informative 

compared to the map generated using all the covariates 

(Bhat et al 2020). Therefore, the environmental covariate 

layers, which significantly contribute to the map generation 

(Shafeeva et al 2022) process by providing necessary 

information, were sorted out using robust PCA techniques. 

Conventional PCA is worked for the data to show the 

effectiveness of robust PCA. The initial step of PCA starts 

with dimensioning the principal components using extracted 

data points. Each principal components contribute some 

percent of variation to the original data. The first few principal 

components account for a high percentage of variability, and 

the percentage of variation decreases as we move down. 

The next step is to select the minimum number of principal 

components which contribute a high percentage of the 

variation, i.e., cumulatively contributing to the original data 

set. The number of principal components is decided based 

on the knee point observed in the scree plot. Finally, the 

analysis is performed using R software.

Scree plot directs to pick four principal components as the 

knee point break at the fourth principal component (Greenacre 

et al 2022) (Table 2a, Fig. 2a). Those four principal 

components cumulatively contribute about 52.46% to the 

original dataset. Similarly, robust PCA is applied to the data. 

Figure 2b shows the scree plot formed using the eigenvalues 

of robust principal components. The selected four PCs 

cumulatively contribute about 63.17% variation to the total 

variation of original data. The percentage of variation 

contributed by PC1 is 30.84 which is the highest among PCs. It 

is followed by PC2, PC3, and PC4. These four principal 

components have eigenvalues greater than 1. Thus, the 
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Principal 
components

Eigen
value

Percentage
of variance

Cumulative 
percentage of variance

Principal 
components

Eigen
value

Percentage of 
variance

Cumulative percentage 
of variance

PC1 9.05 22.78 22.78 PC 18 0.24 1.32 96.04

PC2 6.18 15.01 37.79 PC 19 0.21 1.28 97.32

PC3 4.07 8.91 46.70 PC 20 0.20 0.77 98.09

PC4 2.13 5.76 52.46 PC 21 0.10 0.67 98.76

PC5 2.11 4.90 57.36 PC 22 0.06 0.54 99.30

PC6 1.34 4.74 62.10 PC 23 0.03 0.44 99.74

PC7 1.33 4.67 66.77 PC 24 0.02 0.23 99.97

PC8 1.01 4.56 71.33 PC 25 0.02 0.03 100.00

PC9 0.70 3.76 75.09 PC 26 0.00 0.00 100.00

PC10 0.73 3.56 78.65 PC 27 0.00 0.00 100.00

PC11 0.70 3.45 82.10 PC 28 0.00 0.00 100.00

PC12 0.61 3.33 85.43 PC 29 0.00 0.00 100.00

PC13 0.58 2.78 88.21 PC 30 0.00 0.00 100.00

PC14 0.51 2.01 90.22 PC 31 0.00 0.00 100.00

PC15 0.44 1.58 91.80 PC 32 0.00 0.00 100.00

PC 16 0.32 1.51 93.31 PC 33 0.00 0.00 100.00

PC 17 0.31 1.41 94.72

Table 2a. Results of conventional PCA

Principal 
components

Eigen
value

Percentage
of variance

Cumulative percentage 
of variance

Principal 
components

Eigen
value

Percentage of 
variance

Cumulative percentage 
of variance

PC1 6.90 30.84 30.84 PC 18 0.51 0.24 95.71

PC2 5.01 15.37 46.21 PC 19 0.41 0.98 96.69

PC3 3.01 10.47 56.68 PC 20 0.38 0.93 97.62

PC4 2.41 6.49 63.17 PC 21 0.30 0.74 98.36

PC5 1.53 5.47 68.64 PC 22 0.26 0.63 98.99

PC6 1.37 4.04 72.68 PC 23 0.25 0.61 99.60

PC7 1.30 3.82 76.50 PC 24 0.12 0.29 99.89

PC8 1.27 3.35 79.85 PC 25 0.07 0.10 99.99

PC9 0.99 2.95 82.80 PC 26 0.04 0.01 100.00

PC10 0.97 2.83 85.63 PC 27 0.03 0.00 100.00

PC11 0.96 2.69 88.32 PC 28 0.02 0.00 100.00

PC12 0.95 1.92 90.24 PC 29 0.01 0.00 100.00

PC13 0.91 1.85 92.09 PC 30 0.00 0.00 100.00

PC14 0.88 1.20 93.29 PC 31 0.00 0.00 100.00

PC15 0.77 0.89 94.18 PC 32 0.00 0.00 100.00

PC 16 0.73 0.75 94.93 PC 33 0.00 0.00 100.00

PC 17 0.64 0.54 95.47

Table 2b. Results of Robust PCA

selected principal components are uncorrelated and free from 

multi-collinearity (Shankar et al 2019). Since robust PCA 

contributes more information with fewer principal components 

than the conventional method, the selected four principal 

components of the robust technique are taken for further 

analysis (Parra-González and Rodriguez-Valenzuela 2017). 

Generally, the selected four principal components are used for 

further computing purposes. But as this study aimed to 

determine the environmental parameters for mapping, the high 

contributing parameter of each principal component is found.
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Contributing covariates of principal components PC1, PC2, PC3 
and PC4 (26 variables)

Satellite data- Blue

Satellite data- Green

Satellite data- Red

Satellite data- NIR

Agro Climatic Zone

Agro-Ecological Zone

Western Ghats

Maximum Temperature

Minimum Temperature

Rainfall

Analytical Hill shading

Elevation

General curvature

Longitudinal curvature

LS factor

Maximum curvature

Minimum curvature

Physiography

Plan curvature

Slope

Tangential curvature

Terrain Ruggedness Index

Topographic Wetness Index

Total curvature

Valley depth

Lithology

Table 3. Major contributing covariates of four principal 
components

The significant parameter of selected principal 

components is screened using contributing chart developed 

from principal components. Contribution charts were 

produced between PC1-PC2 and PC3-PC4 and can be 

formed for two principal components simultaneously, 

containing bars and cut-off lines (Fig. 3a, 3b). The bars in the 

charts represent the contribution of each parameter. The cut-

off line in the graph indicates that the bars above the line 

contribute highly, whereas the bars below the line contribute 

Fig. 2a. Scree plot of conventional PCA

Fig. 2b. Scree plot of robust PCA

Fig. 3a. Contribution chart of PC1 and PC2

Fig. 3b. Contribution chart of PC3 and PC4

less (Luo et al 2022). If there are N parameters, then the 

expected average contribution of a PC is 1/N= n%. The cut-

off line will fall on the n%, and the contributing layers of only 

two PCs can be determined. Selecting the contributing 

variables from two principal components, namely PC1 and  

PC2, given by

 (n× eigenvalue of PC1) + (n× eigenvalue of PC2)          

(6)

 The contribution chart of PC1-PC2 (Fig. 3a) shows that 

nineteen out of thirty-three layers have a high percentage 

and fall above the cut-off line. Similarly, the PC3-PC4 

contribution chart (Fig. 3b) reveals those twelve out of thirty-

three layers with a high contribution percentage. The two-

contribution chart are combined and found that twenty-six 

layers out of thirty-three were highly contributing covariates 

of selected PCs. Table 3 gives the selected environmental 

covariates as the study's final independent variables and can 

be used for future mapping (Cavazzi et al 2013).
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CONCLUSION 

Robust PCA effectively reduces dimensionality when the 

datasets are derived from image or raster forms. They are 

extensions of the conventional method in terms of 

robustness and are effective in the presence of outliers. The 

robust PCA selects four principal components, cumulatively 

contributing to the variation of about 63.17%, whereas 

conventional PCA contributes only 52.46%. The scree plot 

aided the selection of appropriate principal components in 

both methods, and it was four principal components. Each 

principal component is composed of all environmental 

covariates, and the significant covariates in each principal 

component were found using contribution charts. 

Contribution charts were developed for PC1-PC2 and PC3-

PC4. The cut-off line in the charts indicated the significantly 

contributing covariates. Environmental covariates like Agro 

Climatic Zone, Agro-Ecological Zone, Western Ghats, 

Maximum Temperature, Minimum Temperature, Rainfall, 

Analytical Hill shading, Elevation, General curvature, 

Longitudinal curvature, LS factor, Maximum curvature, 

minimum curvature, physiography, plan curvature, slope, 

tangential curvature, terrain ruggedness index, topographic 

wetness index, total curvature, valley depth, lithology, and 

green, red, blue, NIR wavelength are found to important 

participants of selected four principal components. 

Therefore, in the process of digital soil mapping, effective 

map generation can be achieved when the environmental 

covariates used as independent variables are chosen in the 

suggested way.
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